local_gradio / app.py
fengn's picture
Upload folder using huggingface_hub
7f1014c verified
from __future__ import annotations
import os
import random
import time
import gradio as gr
import numpy as np
import PIL.Image
import torch
try:
import intel_extension_for_pytorch as ipex
except:
pass
from diffusers import DiffusionPipeline
import torch
import os
import torch
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor
import uuid
DESCRIPTION = '''# Latent Consistency Model
Distilled from [Dreamshaper v7](https://huggingface.co/Lykon/dreamshaper-7) fine-tune of [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) with only 4,000 training iterations (~32 A100 GPU Hours). [Project page](https://latent-consistency-models.github.io)
'''
if torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CUDA πŸ˜€</p>"
elif hasattr(torch, 'xpu') and torch.xpu.is_available():
DESCRIPTION += "\n<p>Running on XPU πŸ€“</p>"
else:
DESCRIPTION += "\n<p>Running on CPU πŸ₯Ά This demo does not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
"""
Operation System Options:
If you are using MacOS, please set the following (device="mps") ;
If you are using Linux & Windows with Nvidia GPU, please set the device="cuda";
If you are using Linux & Windows with Intel Arc GPU, please set the device="xpu";
"""
# device = "mps" # MacOS
#device = "xpu" # Intel Arc GPU
device = "cuda" # Linux & Windows
"""
DTYPE Options:
To reduce GPU memory you can set "DTYPE=torch.float16",
but image quality might be compromised
"""
DTYPE = torch.float16 # torch.float16 works as well, but pictures seem to be a bit worse
#pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7")
pipe = DiffusionPipeline.from_pretrained("D:/git-work/LCM_Dreamshaper_v7")
#pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main")
pipe.to(torch_device=device, torch_dtype=DTYPE)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def save_image(img, profile: gr.OAuthProfile | None, metadata: dict, root_path='./'):
unique_name = str(uuid.uuid4()) + '.png'
unique_name = os.path.join(root_path, unique_name)
img.save(unique_name)
# gr_user_history.save_image(label=metadata["prompt"], image=img, profile=profile, metadata=metadata)
return unique_name
def save_images(image_array, profile: gr.OAuthProfile | None, metadata: dict):
paths = []
root_path = './images/'
os.makedirs(root_path, exist_ok=True)
with ThreadPoolExecutor() as executor:
paths = list(executor.map(save_image, image_array, [profile]*len(image_array), [metadata]*len(image_array), [root_path]*len(image_array)))
return paths
def generate(
prompt: str,
seed: int = 0,
width: int = 512,
height: int = 512,
guidance_scale: float = 8.0,
num_inference_steps: int = 4,
num_images: int = 4,
randomize_seed: bool = False,
param_dtype='torch.float16',
progress = gr.Progress(track_tqdm=True),
profile: gr.OAuthProfile | None = None,
) -> PIL.Image.Image:
seed = randomize_seed_fn(seed, randomize_seed)
torch.manual_seed(seed)
pipe.to(torch_device=device, torch_dtype=torch.float16 if param_dtype == 'torch.float16' else torch.float32)
start_time = time.time()
result = pipe(
prompt=prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
lcm_origin_steps=50,
output_type="pil",
).images
paths = save_images(result, profile, metadata={"prompt": prompt, "seed": seed, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
print(time.time() - start_time)
return paths, seed
examples = [
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography",
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery",
)
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True
)
randomize_seed = gr.Checkbox(label="Randomize seed across runs", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
#minimum=256,
minimum=128,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale for base",
minimum=2,
maximum=14,
step=0.1,
value=8.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps for base",
minimum=1,
maximum=8,
step=1,
value=4,
)
with gr.Row():
num_images = gr.Slider(
label="Number of images",
minimum=1,
maximum=8,
step=1,
value=1,#η”Ÿζˆε›Ύη‰‡ηš„ζ•°ι‡
visible=True,
)
dtype_choices = ['torch.float16','torch.float32']
param_dtype = gr.Radio(dtype_choices,label='torch.dtype',
value=dtype_choices[0],
interactive=True,
info='To save GPU memory, use torch.float16. For better quality, use torch.float32.')
# with gr.Accordion("Past generations", open=False):
# gr_user_history.render()
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
num_images,
randomize_seed,
param_dtype
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(api_open=False)
# demo.queue(max_size=20).launch()
demo.launch(share=True)
#demo.launch()