|
|
|
|
|
|
|
|
|
|
|
import os |
|
import numpy as np |
|
import imageio |
|
import torch |
|
|
|
from matplotlib import cm |
|
import torch.nn.functional as F |
|
import torchvision.transforms as transforms |
|
import matplotlib.pyplot as plt |
|
from PIL import Image, ImageDraw |
|
|
|
|
|
import torchvision |
|
from einops import rearrange |
|
|
|
|
|
def read_video_from_path(path): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit='sec', output_format='THWC') |
|
vframes = vframes.numpy() |
|
return vframes |
|
|
|
|
|
|
|
def draw_circle(rgb, coord, radius, color=(255, 0, 0), visible=True): |
|
|
|
draw = ImageDraw.Draw(rgb) |
|
|
|
left_up_point = (coord[0] - radius, coord[1] - radius) |
|
right_down_point = (coord[0] + radius, coord[1] + radius) |
|
|
|
draw.ellipse( |
|
[left_up_point, right_down_point], |
|
fill=tuple(color) if visible else None, |
|
outline=tuple(color), |
|
) |
|
return rgb |
|
|
|
|
|
def draw_line(rgb, coord_y, coord_x, color, linewidth): |
|
draw = ImageDraw.Draw(rgb) |
|
draw.line( |
|
(coord_y[0], coord_y[1], coord_x[0], coord_x[1]), |
|
fill=tuple(color), |
|
width=linewidth, |
|
) |
|
return rgb |
|
|
|
|
|
def add_weighted(rgb, alpha, original, beta, gamma): |
|
return (rgb * alpha + original * beta + gamma).astype("uint8") |
|
|
|
|
|
class Visualizer: |
|
def __init__( |
|
self, |
|
save_dir: str = "./results", |
|
grayscale: bool = False, |
|
pad_value: int = 0, |
|
fps: int = 10, |
|
mode: str = "rainbow", |
|
linewidth: int = 2, |
|
show_first_frame: int = 10, |
|
tracks_leave_trace: int = 0, |
|
): |
|
self.mode = mode |
|
self.save_dir = save_dir |
|
if mode == "rainbow": |
|
self.color_map = cm.get_cmap("gist_rainbow") |
|
elif mode == "cool": |
|
self.color_map = cm.get_cmap(mode) |
|
self.show_first_frame = show_first_frame |
|
self.grayscale = grayscale |
|
self.tracks_leave_trace = tracks_leave_trace |
|
self.pad_value = pad_value |
|
self.linewidth = linewidth |
|
self.fps = fps |
|
|
|
def visualize( |
|
self, |
|
video: torch.Tensor, |
|
tracks: torch.Tensor, |
|
visibility: torch.Tensor = None, |
|
gt_tracks: torch.Tensor = None, |
|
segm_mask: torch.Tensor = None, |
|
filename: str = "video", |
|
writer=None, |
|
step: int = 0, |
|
query_frame: int = 0, |
|
save_video: bool = True, |
|
compensate_for_camera_motion: bool = False, |
|
): |
|
if compensate_for_camera_motion: |
|
assert segm_mask is not None |
|
if segm_mask is not None: |
|
coords = tracks[0, query_frame].round().long() |
|
segm_mask = segm_mask[0, query_frame][coords[:, 1], coords[:, 0]].long() |
|
|
|
video = F.pad( |
|
video, |
|
(self.pad_value, self.pad_value, self.pad_value, self.pad_value), |
|
"constant", |
|
255, |
|
) |
|
tracks = tracks + self.pad_value |
|
|
|
if self.grayscale: |
|
transform = transforms.Grayscale() |
|
video = transform(video) |
|
video = video.repeat(1, 1, 3, 1, 1) |
|
|
|
res_video = self.draw_tracks_on_video( |
|
video=video, |
|
tracks=tracks, |
|
visibility=visibility, |
|
segm_mask=segm_mask, |
|
gt_tracks=gt_tracks, |
|
query_frame=query_frame, |
|
compensate_for_camera_motion=compensate_for_camera_motion, |
|
) |
|
if save_video: |
|
self.save_video(res_video, filename=filename, writer=writer, step=step) |
|
return res_video |
|
|
|
def save_video(self, video, filename, writer=None, step=0): |
|
if writer is not None: |
|
writer.add_video( |
|
filename, |
|
video.to(torch.uint8), |
|
global_step=step, |
|
fps=self.fps, |
|
) |
|
else: |
|
os.makedirs(self.save_dir, exist_ok=True) |
|
|
|
|
|
save_path = os.path.join(self.save_dir, f"{filename}.mp4") |
|
|
|
assert video.shape[0] == 1 |
|
video = rearrange(video[0], 'T C H W -> T H W C') |
|
torchvision.io.write_video(save_path, video, fps=self.fps) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"Video saved to {save_path}") |
|
|
|
def draw_tracks_on_video( |
|
self, |
|
video: torch.Tensor, |
|
tracks: torch.Tensor, |
|
visibility: torch.Tensor = None, |
|
segm_mask: torch.Tensor = None, |
|
gt_tracks=None, |
|
query_frame: int = 0, |
|
compensate_for_camera_motion=False, |
|
): |
|
B, T, C, H, W = video.shape |
|
_, _, N, D = tracks.shape |
|
|
|
assert D == 2 |
|
assert C == 3 |
|
video = video[0].permute(0, 2, 3, 1).byte().detach().cpu().numpy() |
|
tracks = tracks[0].long().detach().cpu().numpy() |
|
if gt_tracks is not None: |
|
gt_tracks = gt_tracks[0].detach().cpu().numpy() |
|
|
|
res_video = [] |
|
|
|
|
|
for rgb in video: |
|
res_video.append(rgb.copy()) |
|
vector_colors = np.zeros((T, N, 3)) |
|
|
|
|
|
if self.mode == "optical_flow": |
|
import flow_vis |
|
|
|
vector_colors = flow_vis.flow_to_color(tracks - tracks[query_frame][None]) |
|
elif segm_mask is None: |
|
if self.mode == "rainbow": |
|
y_min, y_max = ( |
|
tracks[query_frame, :, 1].min(), |
|
tracks[query_frame, :, 1].max(), |
|
) |
|
norm = plt.Normalize(y_min, y_max) |
|
for n in range(N): |
|
color = self.color_map(norm(tracks[query_frame, n, 1])) |
|
color = np.array(color[:3])[None] * 255 |
|
vector_colors[:, n] = np.repeat(color, T, axis=0) |
|
else: |
|
|
|
for t in range(T): |
|
color = np.array(self.color_map(t / T)[:3])[None] * 255 |
|
vector_colors[t] = np.repeat(color, N, axis=0) |
|
else: |
|
if self.mode == "rainbow": |
|
vector_colors[:, segm_mask <= 0, :] = 255 |
|
|
|
y_min, y_max = ( |
|
tracks[0, segm_mask > 0, 1].min(), |
|
tracks[0, segm_mask > 0, 1].max(), |
|
) |
|
norm = plt.Normalize(y_min, y_max) |
|
for n in range(N): |
|
if segm_mask[n] > 0: |
|
color = self.color_map(norm(tracks[0, n, 1])) |
|
color = np.array(color[:3])[None] * 255 |
|
vector_colors[:, n] = np.repeat(color, T, axis=0) |
|
|
|
else: |
|
|
|
segm_mask = segm_mask.cpu() |
|
color = np.zeros((segm_mask.shape[0], 3), dtype=np.float32) |
|
color[segm_mask > 0] = np.array(self.color_map(1.0)[:3]) * 255.0 |
|
color[segm_mask <= 0] = np.array(self.color_map(0.0)[:3]) * 255.0 |
|
vector_colors = np.repeat(color[None], T, axis=0) |
|
|
|
|
|
if self.tracks_leave_trace != 0: |
|
for t in range(query_frame + 1, T): |
|
first_ind = ( |
|
max(0, t - self.tracks_leave_trace) if self.tracks_leave_trace >= 0 else 0 |
|
) |
|
curr_tracks = tracks[first_ind : t + 1] |
|
curr_colors = vector_colors[first_ind : t + 1] |
|
if compensate_for_camera_motion: |
|
diff = ( |
|
tracks[first_ind : t + 1, segm_mask <= 0] |
|
- tracks[t : t + 1, segm_mask <= 0] |
|
).mean(1)[:, None] |
|
|
|
curr_tracks = curr_tracks - diff |
|
curr_tracks = curr_tracks[:, segm_mask > 0] |
|
curr_colors = curr_colors[:, segm_mask > 0] |
|
|
|
res_video[t] = self._draw_pred_tracks( |
|
res_video[t], |
|
curr_tracks, |
|
curr_colors, |
|
) |
|
if gt_tracks is not None: |
|
res_video[t] = self._draw_gt_tracks(res_video[t], gt_tracks[first_ind : t + 1]) |
|
|
|
|
|
for t in range(query_frame, T): |
|
img = Image.fromarray(np.uint8(res_video[t])) |
|
for i in range(N): |
|
coord = (tracks[t, i, 0], tracks[t, i, 1]) |
|
visibile = True |
|
if visibility is not None: |
|
visibile = visibility[0, t, i] |
|
if coord[0] != 0 and coord[1] != 0: |
|
if not compensate_for_camera_motion or ( |
|
compensate_for_camera_motion and segm_mask[i] > 0 |
|
): |
|
img = draw_circle( |
|
img, |
|
coord=coord, |
|
radius=int(self.linewidth * 2), |
|
color=vector_colors[t, i].astype(int), |
|
visible=visibile, |
|
) |
|
res_video[t] = np.array(img) |
|
|
|
|
|
if self.show_first_frame > 0: |
|
res_video = [res_video[0]] * self.show_first_frame + res_video[1:] |
|
return torch.from_numpy(np.stack(res_video)).permute(0, 3, 1, 2)[None].byte() |
|
|
|
def _draw_pred_tracks( |
|
self, |
|
rgb: np.ndarray, |
|
tracks: np.ndarray, |
|
vector_colors: np.ndarray, |
|
alpha: float = 0.5, |
|
): |
|
T, N, _ = tracks.shape |
|
rgb = Image.fromarray(np.uint8(rgb)) |
|
for s in range(T - 1): |
|
vector_color = vector_colors[s] |
|
original = rgb.copy() |
|
alpha = (s / T) ** 2 |
|
for i in range(N): |
|
coord_y = (int(tracks[s, i, 0]), int(tracks[s, i, 1])) |
|
coord_x = (int(tracks[s + 1, i, 0]), int(tracks[s + 1, i, 1])) |
|
if coord_y[0] != 0 and coord_y[1] != 0: |
|
rgb = draw_line( |
|
rgb, |
|
coord_y, |
|
coord_x, |
|
vector_color[i].astype(int), |
|
self.linewidth, |
|
) |
|
if self.tracks_leave_trace > 0: |
|
rgb = Image.fromarray( |
|
np.uint8(add_weighted(np.array(rgb), alpha, np.array(original), 1 - alpha, 0)) |
|
) |
|
rgb = np.array(rgb) |
|
return rgb |
|
|
|
def _draw_gt_tracks( |
|
self, |
|
rgb: np.ndarray, |
|
gt_tracks: np.ndarray, |
|
): |
|
T, N, _ = gt_tracks.shape |
|
color = np.array((211, 0, 0)) |
|
rgb = Image.fromarray(np.uint8(rgb)) |
|
for t in range(T): |
|
for i in range(N): |
|
gt_tracks = gt_tracks[t][i] |
|
|
|
if gt_tracks[0] > 0 and gt_tracks[1] > 0: |
|
length = self.linewidth * 3 |
|
coord_y = (int(gt_tracks[0]) + length, int(gt_tracks[1]) + length) |
|
coord_x = (int(gt_tracks[0]) - length, int(gt_tracks[1]) - length) |
|
rgb = draw_line( |
|
rgb, |
|
coord_y, |
|
coord_x, |
|
color, |
|
self.linewidth, |
|
) |
|
coord_y = (int(gt_tracks[0]) - length, int(gt_tracks[1]) + length) |
|
coord_x = (int(gt_tracks[0]) + length, int(gt_tracks[1]) - length) |
|
rgb = draw_line( |
|
rgb, |
|
coord_y, |
|
coord_x, |
|
color, |
|
self.linewidth, |
|
) |
|
rgb = np.array(rgb) |
|
return rgb |
|
|