Spaces:
Running
on
L40S
Running
on
L40S
import copy | |
import torch | |
from src.utils import init_weights_on_device | |
def cast_to(weight, dtype, device): | |
r = torch.empty_like(weight, dtype=dtype, device=device) | |
r.copy_(weight) | |
return r | |
class AutoWrappedModule(torch.nn.Module): | |
def __init__( | |
self, | |
module: torch.nn.Module, | |
offload_dtype, | |
offload_device, | |
onload_dtype, | |
onload_device, | |
computation_dtype, | |
computation_device, | |
): | |
super().__init__() | |
self.module = module.to(dtype=offload_dtype, device=offload_device) | |
self.offload_dtype = offload_dtype | |
self.offload_device = offload_device | |
self.onload_dtype = onload_dtype | |
self.onload_device = onload_device | |
self.computation_dtype = computation_dtype | |
self.computation_device = computation_device | |
self.state = 0 | |
def offload(self): | |
if self.state == 1 and ( | |
self.offload_dtype != self.onload_dtype | |
or self.offload_device != self.onload_device | |
): | |
self.module.to(dtype=self.offload_dtype, device=self.offload_device) | |
self.state = 0 | |
def onload(self): | |
if self.state == 0 and ( | |
self.offload_dtype != self.onload_dtype | |
or self.offload_device != self.onload_device | |
): | |
self.module.to(dtype=self.onload_dtype, device=self.onload_device) | |
self.state = 1 | |
def forward(self, *args, **kwargs): | |
if ( | |
self.onload_dtype == self.computation_dtype | |
and self.onload_device == self.computation_device | |
): | |
module = self.module | |
else: | |
module = copy.deepcopy(self.module).to( | |
dtype=self.computation_dtype, device=self.computation_device | |
) | |
return module(*args, **kwargs) | |
class AutoWrappedLinear(torch.nn.Linear): | |
def __init__( | |
self, | |
module: torch.nn.Linear, | |
offload_dtype, | |
offload_device, | |
onload_dtype, | |
onload_device, | |
computation_dtype, | |
computation_device, | |
): | |
with init_weights_on_device(device=torch.device("meta")): | |
super().__init__( | |
in_features=module.in_features, | |
out_features=module.out_features, | |
bias=module.bias is not None, | |
dtype=offload_dtype, | |
device=offload_device, | |
) | |
self.weight = module.weight | |
self.bias = module.bias | |
self.offload_dtype = offload_dtype | |
self.offload_device = offload_device | |
self.onload_dtype = onload_dtype | |
self.onload_device = onload_device | |
self.computation_dtype = computation_dtype | |
self.computation_device = computation_device | |
self.state = 0 | |
def offload(self): | |
if self.state == 1 and ( | |
self.offload_dtype != self.onload_dtype | |
or self.offload_device != self.onload_device | |
): | |
self.to(dtype=self.offload_dtype, device=self.offload_device) | |
self.state = 0 | |
def onload(self): | |
if self.state == 0 and ( | |
self.offload_dtype != self.onload_dtype | |
or self.offload_device != self.onload_device | |
): | |
self.to(dtype=self.onload_dtype, device=self.onload_device) | |
self.state = 1 | |
def forward(self, x, *args, **kwargs): | |
if ( | |
self.onload_dtype == self.computation_dtype | |
and self.onload_device == self.computation_device | |
): | |
weight, bias = self.weight, self.bias | |
else: | |
weight = cast_to( | |
self.weight, self.computation_dtype, self.computation_device | |
) | |
bias = ( | |
None | |
if self.bias is None | |
else cast_to(self.bias, self.computation_dtype, self.computation_device) | |
) | |
return torch.nn.functional.linear(x, weight, bias) | |
def enable_vram_management_recursively( | |
model: torch.nn.Module, | |
module_map: dict, | |
module_config: dict, | |
max_num_param=None, | |
overflow_module_config: dict = None, | |
total_num_param=0, | |
): | |
for name, module in model.named_children(): | |
for source_module, target_module in module_map.items(): | |
if isinstance(module, source_module): | |
num_param = sum(p.numel() for p in module.parameters()) | |
# print(str(module) + ':' + str(num_param)) | |
if ( | |
max_num_param is not None | |
and total_num_param + num_param > max_num_param | |
): | |
# print(str(module) + '-->\t\t num:' + str(num_param) + "\t total:" + str(total_num_param)) | |
module_config_ = overflow_module_config | |
else: | |
module_config_ = module_config | |
module_ = target_module(module, **module_config_) | |
setattr(model, name, module_) | |
total_num_param += num_param | |
break | |
else: | |
total_num_param = enable_vram_management_recursively( | |
module, | |
module_map, | |
module_config, | |
max_num_param, | |
overflow_module_config, | |
total_num_param, | |
) | |
return total_num_param | |
def enable_vram_management( | |
model: torch.nn.Module, | |
module_map: dict, | |
module_config: dict, | |
max_num_param=None, | |
overflow_module_config: dict = None, | |
): | |
enable_vram_management_recursively( | |
model, | |
module_map, | |
module_config, | |
max_num_param, | |
overflow_module_config, | |
total_num_param=0, | |
) | |
model.vram_management_enabled = True | |