fffiloni's picture
Migrated from GitHub
2d438a0 verified
import copy
import torch
from src.utils import init_weights_on_device
def cast_to(weight, dtype, device):
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight)
return r
class AutoWrappedModule(torch.nn.Module):
def __init__(
self,
module: torch.nn.Module,
offload_dtype,
offload_device,
onload_dtype,
onload_device,
computation_dtype,
computation_device,
):
super().__init__()
self.module = module.to(dtype=offload_dtype, device=offload_device)
self.offload_dtype = offload_dtype
self.offload_device = offload_device
self.onload_dtype = onload_dtype
self.onload_device = onload_device
self.computation_dtype = computation_dtype
self.computation_device = computation_device
self.state = 0
def offload(self):
if self.state == 1 and (
self.offload_dtype != self.onload_dtype
or self.offload_device != self.onload_device
):
self.module.to(dtype=self.offload_dtype, device=self.offload_device)
self.state = 0
def onload(self):
if self.state == 0 and (
self.offload_dtype != self.onload_dtype
or self.offload_device != self.onload_device
):
self.module.to(dtype=self.onload_dtype, device=self.onload_device)
self.state = 1
def forward(self, *args, **kwargs):
if (
self.onload_dtype == self.computation_dtype
and self.onload_device == self.computation_device
):
module = self.module
else:
module = copy.deepcopy(self.module).to(
dtype=self.computation_dtype, device=self.computation_device
)
return module(*args, **kwargs)
class AutoWrappedLinear(torch.nn.Linear):
def __init__(
self,
module: torch.nn.Linear,
offload_dtype,
offload_device,
onload_dtype,
onload_device,
computation_dtype,
computation_device,
):
with init_weights_on_device(device=torch.device("meta")):
super().__init__(
in_features=module.in_features,
out_features=module.out_features,
bias=module.bias is not None,
dtype=offload_dtype,
device=offload_device,
)
self.weight = module.weight
self.bias = module.bias
self.offload_dtype = offload_dtype
self.offload_device = offload_device
self.onload_dtype = onload_dtype
self.onload_device = onload_device
self.computation_dtype = computation_dtype
self.computation_device = computation_device
self.state = 0
def offload(self):
if self.state == 1 and (
self.offload_dtype != self.onload_dtype
or self.offload_device != self.onload_device
):
self.to(dtype=self.offload_dtype, device=self.offload_device)
self.state = 0
def onload(self):
if self.state == 0 and (
self.offload_dtype != self.onload_dtype
or self.offload_device != self.onload_device
):
self.to(dtype=self.onload_dtype, device=self.onload_device)
self.state = 1
def forward(self, x, *args, **kwargs):
if (
self.onload_dtype == self.computation_dtype
and self.onload_device == self.computation_device
):
weight, bias = self.weight, self.bias
else:
weight = cast_to(
self.weight, self.computation_dtype, self.computation_device
)
bias = (
None
if self.bias is None
else cast_to(self.bias, self.computation_dtype, self.computation_device)
)
return torch.nn.functional.linear(x, weight, bias)
def enable_vram_management_recursively(
model: torch.nn.Module,
module_map: dict,
module_config: dict,
max_num_param=None,
overflow_module_config: dict = None,
total_num_param=0,
):
for name, module in model.named_children():
for source_module, target_module in module_map.items():
if isinstance(module, source_module):
num_param = sum(p.numel() for p in module.parameters())
# print(str(module) + ':' + str(num_param))
if (
max_num_param is not None
and total_num_param + num_param > max_num_param
):
# print(str(module) + '-->\t\t num:' + str(num_param) + "\t total:" + str(total_num_param))
module_config_ = overflow_module_config
else:
module_config_ = module_config
module_ = target_module(module, **module_config_)
setattr(model, name, module_)
total_num_param += num_param
break
else:
total_num_param = enable_vram_management_recursively(
module,
module_map,
module_config,
max_num_param,
overflow_module_config,
total_num_param,
)
return total_num_param
def enable_vram_management(
model: torch.nn.Module,
module_map: dict,
module_config: dict,
max_num_param=None,
overflow_module_config: dict = None,
):
enable_vram_management_recursively(
model,
module_map,
module_config,
max_num_param,
overflow_module_config,
total_num_param=0,
)
model.vram_management_enabled = True