File size: 6,664 Bytes
6c0d568
a4f8a15
 
6c0d568
1eecd17
eee8ee3
6c0d568
eee8ee3
6c0d568
 
 
eee8ee3
4b76a05
eee8ee3
3b79011
eee8ee3
 
 
 
 
3b79011
 
 
 
eee8ee3
3b79011
eee8ee3
 
 
3b79011
 
 
 
 
eee8ee3
 
 
 
 
 
aafe80a
 
 
 
 
 
 
 
6c0d568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eee8ee3
6c0d568
 
 
6eee3ae
5010485
6c0d568
 
 
 
 
 
 
eee8ee3
a37e840
6c0d568
 
 
 
 
 
01bbb6c
6c0d568
 
 
 
 
 
 
 
 
 
 
5dc63c4
6c0d568
 
eee8ee3
 
 
6c0d568
eee8ee3
 
 
 
51c3be9
 
 
2556971
eee8ee3
3b79011
eee8ee3
51c3be9
 
 
 
 
2556971
eee8ee3
3b79011
eee8ee3
 
6c0d568
 
eee8ee3
6c0d568
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
import os
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor

def preprocess_image(image):
    return image, gr.State([]), gr.State([]), image

def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData):
    print(f"You selected {evt.value} at {evt.index} from {evt.target}")

    tracking_points.value.append(evt.index)
    print(f"TRACKING POINT: {tracking_points.value}")

    if point_type == "include":
        trackings_input_label.value.append(1)
    elif point_type == "exclude":
        trackings_input_label.value.append(0)
    print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
    
    transparent_background = Image.open(first_frame_path).convert('RGBA')
    w, h = transparent_background.size
    transparent_layer = np.zeros((h, w, 4))
    for index, track in enumerate(tracking_points.value):
        if trackings_input_label.value[index] == 1:
            cv2.circle(transparent_layer, track, 5, (0, 0, 255, 255), -1)
        else:
            cv2.circle(transparent_layer, track, 5, (255, 0, 0, 255), -1)

    transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
    selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
    
    return tracking_points, trackings_input_label, selected_point_map
    
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()

if torch.cuda.get_device_properties(0).major >= 8:
    # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True
    
def show_mask(mask, ax, random_color=False, borders = True):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        color = np.array([30/255, 144/255, 255/255, 0.6])
    h, w = mask.shape[-2:]
    mask = mask.astype(np.uint8)
    mask_image =  mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    if borders:
        import cv2
        contours, _ = cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) 
        # Try to smooth contours
        contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
        mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2) 
    ax.imshow(mask_image)

def show_points(coords, labels, ax, marker_size=375):
    pos_points = coords[labels==1]
    neg_points = coords[labels==0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)   

def show_box(box, ax):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))    

def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
    masks_store = []
    for i, (mask, score) in enumerate(zip(masks, scores)):
        plt.figure(figsize=(10, 10))
        plt.imshow(image)
        show_mask(mask, plt.gca(), borders=borders)
        if point_coords is not None:
            assert input_labels is not None
            show_points(point_coords, input_labels, plt.gca())
        if box_coords is not None:
            # boxes
            show_box(box_coords, plt.gca())
        if len(scores) > 1:
            plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
        plt.axis('off')
        # plt.show()

        # Save the figure as a JPG file
        filename = f"masked_image_{i+1}.jpg"
        plt.savefig(filename, format='jpg', bbox_inches='tight')

        masks_store.append(filename)
        
        # Close the figure to free up memory
        plt.close()

        return masks_store

def sam_process(input_image, tracking_points, trackings_input_label):
    image = Image.open(input_image)
    image = np.array(image.convert("RGB"))

    sam2_checkpoint = "./checkpoints/sam2_hiera_tiny.pt"
    model_cfg = "sam2_hiera_t.yaml"

    sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
    
    predictor = SAM2ImagePredictor(sam2_model)

    predictor.set_image(image)

    input_point = np.array(tracking_points.value)
    input_label = np.array(trackings_input_label.value)

    print(predictor._features["image_embed"].shape, predictor._features["image_embed"][-1].shape)

    masks, scores, logits = predictor.predict(
        point_coords=input_point,
        point_labels=input_label,
        multimask_output=False,
    )
    sorted_ind = np.argsort(scores)[::-1]
    masks = masks[sorted_ind]
    scores = scores[sorted_ind]
    logits = logits[sorted_ind]

    print(masks.shape)

    results = show_masks(image, masks, scores, point_coords=input_point, input_labels=input_label, borders=True)
    print(results)

    return results[0]

with gr.Blocks() as demo:
    first_frame_path = gr.State()
    tracking_points = gr.State([])
    trackings_input_label = gr.State([])
    with gr.Column():
        gr.Markdown("# SAM2 Image Predictor")
        with gr.Row():
            input_image = gr.Image(label="input image", interactive=True, type="filepath")
            with gr.Column():
                with gr.Row():
                    point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include")
                    clear_points_btn = gr.Button("Clear Points")
                points_map = gr.Image(label="points map", interactive=False)
                submit_btn = gr.Button("Submit")
            output_result = gr.Image()
    
    clear_points_btn.click(
        fn = preprocess_image,
        inputs = input_image, 
        outputs = [first_frame_path, tracking_points, trackings_input_label, points_map]
    )
    input_image.upload(preprocess_image, input_image, [first_frame_path, tracking_points, trackings_input_label, points_map])

    points_map.select(get_point, [point_type, tracking_points, trackings_input_label, first_frame_path], [tracking_points, trackings_input_label, points_map])


    submit_btn.click(
        fn = sam_process,
        inputs = [input_image, tracking_points, trackings_input_label],
        outputs = [output_result]
    )
demo.launch()