|
import abc |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from IPython.display import display |
|
from PIL import Image |
|
from typing import Union, Tuple, List, Dict, Optional |
|
import torch.nn.functional as nnf |
|
from PIL import Image, ImageDraw, ImageFont |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0), font_scale: float = 1.0, thickness: int = 3) -> np.ndarray: |
|
h, w, c = image.shape |
|
|
|
offset = int(h * .2) |
|
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255 |
|
font = cv2.FONT_HERSHEY_SIMPLEX |
|
img[:h] = image |
|
textsize = cv2.getTextSize(text, font, font_scale, thickness)[0] |
|
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2 |
|
cv2.putText(img, text, (text_x, text_y), font, font_scale, text_color, 2) |
|
return img |
|
|
|
|
|
def text_under_image_pil(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0), font_scale: float = 1.0) -> np.ndarray: |
|
image_pil = Image.fromarray(image) |
|
draw = ImageDraw.Draw(image_pil) |
|
|
|
font_size = int(font_scale * image.shape[0] / 20) |
|
|
|
font_path = "./Roboto-Regular.ttf" |
|
font = ImageFont.truetype(font_path, font_size) |
|
|
|
textsize = draw.textsize(text, font=font) |
|
text_x = (image.shape[1] - textsize[0]) // 2 |
|
text_y = image.shape[0] |
|
|
|
draw.text((text_x, text_y), text, font=font, fill=text_color) |
|
|
|
return np.array(image_pil) |
|
|
|
|
|
def view_images(images: Union[np.ndarray, List], |
|
num_rows: int = 1, |
|
offset_ratio: float = 0.02, |
|
display_image: bool = True) -> Image.Image: |
|
""" Displays a list of images in a grid. """ |
|
if type(images) is list: |
|
num_empty = len(images) % num_rows |
|
elif images.ndim == 4: |
|
num_empty = images.shape[0] % num_rows |
|
else: |
|
images = [images] |
|
num_empty = 0 |
|
|
|
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255 |
|
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty |
|
num_items = len(images) |
|
|
|
h, w, c = images[0].shape |
|
offset = int(h * offset_ratio) |
|
num_cols = num_items // num_rows |
|
image_ = np.ones((h * num_rows + offset * (num_rows - 1), |
|
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255 |
|
for i in range(num_rows): |
|
for j in range(num_cols): |
|
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[ |
|
i * num_cols + j] |
|
|
|
pil_img = Image.fromarray(image_) |
|
if display_image: |
|
display(pil_img) |
|
return pil_img |
|
|
|
|
|
def view_images_with_texts(images: Union[np.ndarray, List], |
|
texts: Union[str, List[str]], |
|
num_rows: int = 1, |
|
offset_ratio: float = 0.02, |
|
font_scale: float = 1.0, |
|
display_image: bool = True) -> Image.Image: |
|
""" Displays a list of images in a grid with texts below them. """ |
|
|
|
|
|
if isinstance(texts, str): |
|
texts = [texts] * len(images) |
|
|
|
|
|
images_with_texts = [text_under_image(img, txt, font_scale=font_scale) for img, txt in zip(images, texts)] |
|
|
|
if type(images_with_texts) is list: |
|
num_empty = len(images_with_texts) % num_rows |
|
elif images_with_texts.ndim == 4: |
|
num_empty = images_with_texts.shape[0] % num_rows |
|
else: |
|
images_with_texts = [images_with_texts] |
|
num_empty = 0 |
|
|
|
empty_images = np.ones(images_with_texts[0].shape, dtype=np.uint8) * 255 |
|
images_with_texts = [image.astype(np.uint8) for image in images_with_texts] + [empty_images] * num_empty |
|
num_items = len(images_with_texts) |
|
|
|
h, w, c = images_with_texts[0].shape |
|
offset = int(h * offset_ratio) |
|
num_cols = num_items // num_rows |
|
image_ = np.ones((h * num_rows + offset * (num_rows - 1), |
|
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255 |
|
for i in range(num_rows): |
|
for j in range(num_cols): |
|
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images_with_texts[ |
|
i * num_cols + j] |
|
|
|
pil_img = Image.fromarray(image_) |
|
if display_image: |
|
display(pil_img) |
|
return pil_img |
|
|
|
|
|
|
|
class AttentionControl(abc.ABC): |
|
|
|
def step_callback(self, x_t): |
|
return x_t |
|
|
|
def between_steps(self): |
|
return |
|
|
|
@property |
|
def num_uncond_att_layers(self): |
|
return 0 |
|
|
|
@abc.abstractmethod |
|
def forward (self, attn, is_cross: bool, place_in_unet: str): |
|
raise NotImplementedError |
|
|
|
def __call__(self, attn, is_cross: bool, place_in_unet: str): |
|
if self.cur_att_layer >= self.num_uncond_att_layers: |
|
h = attn.shape[0] |
|
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet) |
|
self.cur_att_layer += 1 |
|
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers: |
|
self.cur_att_layer = 0 |
|
self.cur_step += 1 |
|
self.between_steps() |
|
return attn |
|
|
|
def reset(self): |
|
self.cur_step = 0 |
|
self.cur_att_layer = 0 |
|
|
|
def __init__(self): |
|
self.cur_step = 0 |
|
self.num_att_layers = -1 |
|
self.cur_att_layer = 0 |
|
|
|
|
|
class EmptyControl(AttentionControl): |
|
|
|
def forward(self, attn, is_cross: bool, place_in_unet: str): |
|
return attn |
|
|
|
|
|
class AttentionStore(AttentionControl): |
|
|
|
@staticmethod |
|
def get_empty_store(): |
|
return {"down_cross": [], "mid_cross": [], "up_cross": [], |
|
"down_self": [], "mid_self": [], "up_self": []} |
|
|
|
def forward(self, attn, is_cross: bool, place_in_unet: str): |
|
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" |
|
if attn.shape[1] <= 32 ** 2: |
|
self.step_store[key].append(attn) |
|
return attn |
|
|
|
def between_steps(self): |
|
if len(self.attention_store) == 0: |
|
self.attention_store = self.step_store |
|
else: |
|
for key in self.attention_store: |
|
for i in range(len(self.attention_store[key])): |
|
self.attention_store[key][i] += self.step_store[key][i] |
|
self.step_store = self.get_empty_store() |
|
|
|
def get_average_attention(self): |
|
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store} |
|
return average_attention |
|
|
|
|
|
def reset(self): |
|
super(AttentionStore, self).reset() |
|
self.step_store = self.get_empty_store() |
|
self.attention_store = {} |
|
|
|
def __init__(self): |
|
super(AttentionStore, self).__init__() |
|
self.step_store = self.get_empty_store() |
|
self.attention_store = {} |
|
|
|
class LocalBlend: |
|
|
|
def __call__(self, x_t, attention_store): |
|
k = 1 |
|
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3] |
|
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, self.max_num_words) for item in maps] |
|
maps = torch.cat(maps, dim=1) |
|
maps = (maps * self.alpha_layers).sum(-1).mean(1) |
|
mask = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k)) |
|
mask = nnf.interpolate(mask, size=(x_t.shape[2:])) |
|
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0] |
|
mask = mask.gt(self.threshold) |
|
mask = (mask[:1] + mask[1:]).float() |
|
x_t = x_t[:1] + mask * (x_t - x_t[:1]) |
|
return x_t |
|
|
|
def __init__(self, prompts: List[str], words: [List[List[str]]], tokenizer, device, dtype=torch.float32, threshold=.3, max_num_words=77): |
|
self.max_num_words = 77 |
|
|
|
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, self.max_num_words) |
|
for i, (prompt, words_) in enumerate(zip(prompts, words)): |
|
if type(words_) is str: |
|
words_ = [words_] |
|
for word in words_: |
|
ind = get_word_inds(prompt, word, tokenizer) |
|
alpha_layers[i, :, :, :, :, ind] = 1 |
|
self.alpha_layers = alpha_layers.to(device, dtype) |
|
self.threshold = threshold |
|
|
|
class AttentionControlEdit(AttentionStore, abc.ABC): |
|
|
|
def step_callback(self, x_t): |
|
if self.local_blend is not None: |
|
x_t = self.local_blend(x_t, self.attention_store) |
|
return x_t |
|
|
|
def replace_self_attention(self, attn_base, att_replace): |
|
if att_replace.shape[2] <= 16 ** 2: |
|
return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape) |
|
else: |
|
return att_replace |
|
|
|
@abc.abstractmethod |
|
def replace_cross_attention(self, attn_base, att_replace): |
|
raise NotImplementedError |
|
|
|
def forward(self, attn, is_cross: bool, place_in_unet: str): |
|
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet) |
|
|
|
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]): |
|
h = attn.shape[0] // (self.batch_size) |
|
attn = attn.reshape(self.batch_size, h, *attn.shape[1:]) |
|
attn_base, attn_repalce = attn[0], attn[1:] |
|
if is_cross: |
|
alpha_words = self.cross_replace_alpha[self.cur_step] |
|
attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce |
|
attn[1:] = attn_repalce_new |
|
else: |
|
attn[1:] = self.replace_self_attention(attn_base, attn_repalce) |
|
attn = attn.reshape(self.batch_size * h, *attn.shape[2:]) |
|
return attn |
|
|
|
def __init__(self, prompts, num_steps: int, |
|
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], |
|
self_replace_steps: Union[float, Tuple[float, float]], |
|
local_blend: Optional[LocalBlend], |
|
tokenizer, |
|
device, |
|
dtype): |
|
super(AttentionControlEdit, self).__init__() |
|
|
|
|
|
self.tokenizer = tokenizer |
|
self.device = device |
|
self.dtype = dtype |
|
|
|
self.batch_size = len(prompts) |
|
self.cross_replace_alpha = get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, self.tokenizer).to(self.device, self.dtype) |
|
if type(self_replace_steps) is float: |
|
self_replace_steps = 0, self_replace_steps |
|
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1]) |
|
self.local_blend = local_blend |
|
|
|
class AttentionReplace(AttentionControlEdit): |
|
|
|
def replace_cross_attention(self, attn_base, att_replace): |
|
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper) |
|
|
|
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, |
|
local_blend: Optional[LocalBlend] = None, tokenizer=None, device=None, dtype=torch.float32): |
|
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device, dtype) |
|
self.mapper = get_replacement_mapper(prompts, self.tokenizer).to(self.device, dtype=dtype) |
|
|
|
|
|
class AttentionRefine(AttentionControlEdit): |
|
|
|
def replace_cross_attention(self, attn_base, att_replace): |
|
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3) |
|
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas) |
|
return attn_replace |
|
|
|
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, |
|
local_blend: Optional[LocalBlend] = None, tokenizer=None, device=None, dtype=torch.float32): |
|
super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device, dtype) |
|
self.mapper, alphas = get_refinement_mapper(prompts, self.tokenizer) |
|
self.mapper, alphas = self.mapper.to(self.device, self.dtype), alphas.to(self.device, self.dtype) |
|
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1]) |
|
|
|
class AttentionReweight(AttentionControlEdit): |
|
|
|
def replace_cross_attention(self, attn_base, att_replace): |
|
if self.prev_controller is not None: |
|
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace) |
|
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :] |
|
return attn_replace |
|
|
|
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer, |
|
local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None, tokenizer=None, device=None, dtype=torch.float32): |
|
super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend, tokenizer, device, dtype) |
|
self.equalizer = equalizer.to(self.device, self.dtype) |
|
self.prev_controller = controller |
|
|
|
|
|
def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], Tuple[float, ...]], tokenizer): |
|
if type(word_select) is int or type(word_select) is str: |
|
word_select = (word_select,) |
|
equalizer = torch.ones(len(values), 77) |
|
values = torch.tensor(values, dtype=torch.float32) |
|
for word in word_select: |
|
inds = get_word_inds(text, word, tokenizer) |
|
equalizer[:, inds] = values |
|
return equalizer |
|
|
|
|
|
def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, |
|
word_inds: Optional[torch.Tensor]=None): |
|
if type(bounds) is float: |
|
bounds = 0, bounds |
|
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0]) |
|
if word_inds is None: |
|
word_inds = torch.arange(alpha.shape[2]) |
|
alpha[: start, prompt_ind, word_inds] = 0 |
|
alpha[start: end, prompt_ind, word_inds] = 1 |
|
alpha[end:, prompt_ind, word_inds] = 0 |
|
return alpha |
|
|
|
def get_time_words_attention_alpha(prompts, num_steps, |
|
cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]], |
|
tokenizer, max_num_words=77): |
|
if type(cross_replace_steps) is not dict: |
|
cross_replace_steps = {"default_": cross_replace_steps} |
|
if "default_" not in cross_replace_steps: |
|
cross_replace_steps["default_"] = (0., 1.) |
|
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words) |
|
for i in range(len(prompts) - 1): |
|
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], |
|
i) |
|
for key, item in cross_replace_steps.items(): |
|
if key != "default_": |
|
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))] |
|
for i, ind in enumerate(inds): |
|
if len(ind) > 0: |
|
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind) |
|
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words) |
|
return alpha_time_words |
|
|
|
|
|
|
|
|
|
class ScoreParams: |
|
|
|
def __init__(self, gap, match, mismatch): |
|
self.gap = gap |
|
self.match = match |
|
self.mismatch = mismatch |
|
|
|
def mis_match_char(self, x, y): |
|
if x != y: |
|
return self.mismatch |
|
else: |
|
return self.match |
|
|
|
|
|
def get_matrix(size_x, size_y, gap): |
|
matrix = [] |
|
for i in range(len(size_x) + 1): |
|
sub_matrix = [] |
|
for j in range(len(size_y) + 1): |
|
sub_matrix.append(0) |
|
matrix.append(sub_matrix) |
|
for j in range(1, len(size_y) + 1): |
|
matrix[0][j] = j*gap |
|
for i in range(1, len(size_x) + 1): |
|
matrix[i][0] = i*gap |
|
return matrix |
|
|
|
|
|
def get_matrix(size_x, size_y, gap): |
|
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32) |
|
matrix[0, 1:] = (np.arange(size_y) + 1) * gap |
|
matrix[1:, 0] = (np.arange(size_x) + 1) * gap |
|
return matrix |
|
|
|
|
|
def get_traceback_matrix(size_x, size_y): |
|
matrix = np.zeros((size_x + 1, size_y +1), dtype=np.int32) |
|
matrix[0, 1:] = 1 |
|
matrix[1:, 0] = 2 |
|
matrix[0, 0] = 4 |
|
return matrix |
|
|
|
|
|
def global_align(x, y, score): |
|
matrix = get_matrix(len(x), len(y), score.gap) |
|
trace_back = get_traceback_matrix(len(x), len(y)) |
|
for i in range(1, len(x) + 1): |
|
for j in range(1, len(y) + 1): |
|
left = matrix[i, j - 1] + score.gap |
|
up = matrix[i - 1, j] + score.gap |
|
diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1]) |
|
matrix[i, j] = max(left, up, diag) |
|
if matrix[i, j] == left: |
|
trace_back[i, j] = 1 |
|
elif matrix[i, j] == up: |
|
trace_back[i, j] = 2 |
|
else: |
|
trace_back[i, j] = 3 |
|
return matrix, trace_back |
|
|
|
|
|
def get_aligned_sequences(x, y, trace_back): |
|
x_seq = [] |
|
y_seq = [] |
|
i = len(x) |
|
j = len(y) |
|
mapper_y_to_x = [] |
|
while i > 0 or j > 0: |
|
if trace_back[i, j] == 3: |
|
x_seq.append(x[i-1]) |
|
y_seq.append(y[j-1]) |
|
i = i-1 |
|
j = j-1 |
|
mapper_y_to_x.append((j, i)) |
|
elif trace_back[i][j] == 1: |
|
x_seq.append('-') |
|
y_seq.append(y[j-1]) |
|
j = j-1 |
|
mapper_y_to_x.append((j, -1)) |
|
elif trace_back[i][j] == 2: |
|
x_seq.append(x[i-1]) |
|
y_seq.append('-') |
|
i = i-1 |
|
elif trace_back[i][j] == 4: |
|
break |
|
mapper_y_to_x.reverse() |
|
return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64) |
|
|
|
|
|
def get_mapper(x: str, y: str, tokenizer, max_len=77): |
|
x_seq = tokenizer.encode(x) |
|
y_seq = tokenizer.encode(y) |
|
score = ScoreParams(0, 1, -1) |
|
matrix, trace_back = global_align(x_seq, y_seq, score) |
|
mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1] |
|
alphas = torch.ones(max_len) |
|
alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float() |
|
mapper = torch.zeros(max_len, dtype=torch.int64) |
|
mapper[:mapper_base.shape[0]] = mapper_base[:, 1] |
|
mapper[mapper_base.shape[0]:] = len(y_seq) + torch.arange(max_len - len(y_seq)) |
|
return mapper, alphas |
|
|
|
|
|
def get_refinement_mapper(prompts, tokenizer, max_len=77): |
|
x_seq = prompts[0] |
|
mappers, alphas = [], [] |
|
for i in range(1, len(prompts)): |
|
mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len) |
|
mappers.append(mapper) |
|
alphas.append(alpha) |
|
return torch.stack(mappers), torch.stack(alphas) |
|
|
|
|
|
def get_word_inds(text: str, word_place: int, tokenizer): |
|
split_text = text.split(" ") |
|
if type(word_place) is str: |
|
word_place = [i for i, word in enumerate(split_text) if word_place == word] |
|
elif type(word_place) is int: |
|
word_place = [word_place] |
|
out = [] |
|
if len(word_place) > 0: |
|
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1] |
|
cur_len, ptr = 0, 0 |
|
|
|
for i in range(len(words_encode)): |
|
cur_len += len(words_encode[i]) |
|
if ptr in word_place: |
|
out.append(i + 1) |
|
if cur_len >= len(split_text[ptr]): |
|
ptr += 1 |
|
cur_len = 0 |
|
return np.array(out) |
|
|
|
|
|
def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77): |
|
words_x = x.split(' ') |
|
words_y = y.split(' ') |
|
if len(words_x) != len(words_y): |
|
raise ValueError(f"attention replacement edit can only be applied on prompts with the same length" |
|
f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words.") |
|
inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]] |
|
inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace] |
|
inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace] |
|
mapper = np.zeros((max_len, max_len)) |
|
i = j = 0 |
|
cur_inds = 0 |
|
while i < max_len and j < max_len: |
|
if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i: |
|
inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds] |
|
if len(inds_source_) == len(inds_target_): |
|
mapper[inds_source_, inds_target_] = 1 |
|
else: |
|
ratio = 1 / len(inds_target_) |
|
for i_t in inds_target_: |
|
mapper[inds_source_, i_t] = ratio |
|
cur_inds += 1 |
|
i += len(inds_source_) |
|
j += len(inds_target_) |
|
elif cur_inds < len(inds_source): |
|
mapper[i, j] = 1 |
|
i += 1 |
|
j += 1 |
|
else: |
|
mapper[j, j] = 1 |
|
i += 1 |
|
j += 1 |
|
|
|
return torch.from_numpy(mapper).float() |
|
|
|
|
|
def get_replacement_mapper(prompts, tokenizer, max_len=77): |
|
x_seq = prompts[0] |
|
mappers = [] |
|
for i in range(1, len(prompts)): |
|
mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len) |
|
mappers.append(mapper) |
|
return torch.stack(mappers) |