File size: 20,040 Bytes
9659078
274d8f8
5f924a4
 
bc8d473
9659078
adf3e3f
f523090
 
5cbba27
6d9d106
8a42908
 
89f999f
8a42908
274d8f8
 
 
 
 
 
 
 
 
 
 
 
5a82610
 
 
6d9d106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274d8f8
5cbba27
 
 
 
6caac3f
5cbba27
 
 
 
 
 
 
 
6caac3f
5cbba27
 
 
6caac3f
5cbba27
 
 
6caac3f
5cbba27
 
 
 
6caac3f
5cbba27
 
 
6caac3f
5cbba27
 
 
 
 
 
 
3b30482
5cbba27
3b30482
5cbba27
 
3b30482
6caac3f
3b30482
5cbba27
 
6b68fd6
5cbba27
 
 
 
 
1aa832a
5cbba27
 
 
 
 
 
 
 
 
 
274d8f8
 
 
 
 
 
 
6d9d106
5cbba27
12efb0f
6b68fd6
 
 
12efb0f
5cbba27
f18e97a
5cbba27
 
f18e97a
d99fb2b
1aa832a
f18e97a
5cbba27
 
1aa832a
5cbba27
 
 
 
 
 
 
1aa832a
5cbba27
 
5f924a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89f999f
1aa832a
 
89f999f
 
 
 
 
 
 
 
1aa832a
 
89f999f
5a82610
 
 
f523090
0c32eee
 
 
 
 
cc07fe9
40ae971
cc07fe9
3b30482
1aa832a
5cbba27
274d8f8
 
12efb0f
6b68fd6
 
 
12efb0f
1aa832a
89f999f
 
 
 
 
 
 
 
274d8f8
6b68fd6
89f999f
274d8f8
 
 
6b68fd6
40ae971
274d8f8
3b30482
1aa832a
274d8f8
8302c0f
0cdadc9
0bd14d2
9d546f2
274d8f8
97cfbd0
 
 
5749569
97cfbd0
ce3988a
 
 
 
 
 
 
97cfbd0
 
 
 
274d8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc07fe9
 
 
 
da5b19f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44eb4d8
 
b90ed12
44eb4d8
 
 
 
0bd14d2
 
 
 
 
cc07fe9
7fc3411
7a3df69
46dcc9b
7fc3411
ce514b9
7a3df69
cc07fe9
 
 
0bd14d2
b5682ef
 
 
bdd2a21
89f999f
bdd2a21
274d8f8
b5682ef
8a42908
274d8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cbba27
 
274d8f8
5cbba27
274d8f8
5cbba27
 
 
5749569
5cbba27
5749569
5cbba27
5749569
 
 
5cbba27
5749569
5cbba27
5749569
5cbba27
5749569
5cbba27
 
 
5749569
5cbba27
274d8f8
 
 
 
 
 
5cbba27
274d8f8
5cbba27
ca347d5
 
5cbba27
 
274d8f8
 
 
 
 
 
 
98f8c77
274d8f8
 
 
 
 
b5682ef
 
0bd14d2
b5682ef
274d8f8
 
b5682ef
0bd14d2
b5682ef
274d8f8
 
b5682ef
 
 
 
 
 
274d8f8
5cbba27
 
 
 
274d8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca347d5
274d8f8
 
 
 
 
 
 
0bd14d2
ca347d5
 
e420073
9bb5aa9
 
 
 
 
5cbba27
 
9bb5aa9
 
 
 
5cbba27
 
9bb5aa9
e420073
9bb5aa9
 
 
5cbba27
 
 
e420073
9bb5aa9
 
 
274d8f8
5cbba27
 
9bb5aa9
274d8f8
9bb5aa9
 
 
 
 
007b47b
9bb5aa9
 
44eb4d8
 
 
b90ed12
 
44eb4d8
 
 
9bb5aa9
e420073
0bd14d2
 
 
 
5cbba27
 
 
0bd14d2
 
 
cc07fe9
274d8f8
5cbba27
 
274d8f8
 
 
 
 
 
 
5cbba27
 
 
274d8f8
 
 
 
 
5cbba27
 
274d8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
d9dce8e
0bd14d2
 
274d8f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
import gradio as gr
from share_btn import community_icon_html, loading_icon_html, share_js
import os 
import shutil
import re

#from huggingface_hub import snapshot_download
import numpy as np
from scipy.io import wavfile
from scipy.io.wavfile import write, read
from pydub import AudioSegment

file_upload_available = os.environ.get("ALLOW_FILE_UPLOAD")
MAX_NUMBER_SENTENCES = 10

import json
with open("characters.json", "r") as file:
    data = json.load(file)
    characters = [
        {
            "image": item["image"],
            "title": item["title"],
            "speaker": item["speaker"]
        }
        for item in data
    ]
    
from TTS.api import TTS
tts = TTS("tts_models/multilingual/multi-dataset/bark", gpu=True)

def cut_wav(input_path, max_duration):
    # Load the WAV file
    audio = AudioSegment.from_wav(input_path)
    
    # Calculate the duration of the audio
    audio_duration = len(audio) / 1000  # Convert milliseconds to seconds
    
    # Determine the duration to cut (maximum of max_duration and actual audio duration)
    cut_duration = min(max_duration, audio_duration)
    
    # Cut the audio
    cut_audio = audio[:int(cut_duration * 1000)]  # Convert seconds to milliseconds
    
    # Get the input file name without extension
    file_name = os.path.splitext(os.path.basename(input_path))[0]
    
    # Construct the output file path with the original file name and "_cut" suffix
    output_path = f"{file_name}_cut.wav"
    
    # Save the cut audio as a new WAV file
    cut_audio.export(output_path, format="wav")

    return output_path

def load_hidden(audio_in):
    return audio_in

def load_hidden_mic(audio_in):
    print("USER RECORDED A NEW SAMPLE")
    
    library_path = 'bark_voices'  
    folder_name = 'audio-0-100'  
    second_folder_name = 'audio-0-100_cleaned' 
    
    folder_path = os.path.join(library_path, folder_name)
    second_folder_path = os.path.join(library_path, second_folder_name)

    print("We need to clean previous util files, if needed:")
    if os.path.exists(folder_path):
        try:
            shutil.rmtree(folder_path)
            print(f"Successfully deleted the folder previously created from last raw recorded sample: {folder_path}")
        except OSError as e:
            print(f"Error: {folder_path} - {e.strerror}")
    else:
        print(f"OK, the folder a raw recorded sample does not exist: {folder_path}")

    if os.path.exists(second_folder_path):
        try:
            shutil.rmtree(second_folder_path)
            print(f"Successfully deleted the folder previously created from last cleaned recorded sample: {second_folder_path}")
        except OSError as e:
            print(f"Error: {second_folder_path} - {e.strerror}")
    else:
        print(f"Ok, the folderfor a cleaned recorded sample does not exist: {second_folder_path}")
    
    return audio_in

def clear_clean_ckeck():
    return False

def wipe_npz_file(folder_path):
    #print(f"We have to wipe previous .npz files, inf {folder_path} if needed")
    if os.path.exists(folder_path):
        #print(f"folder {folder_path} exists")
        #shutil.rmtree(folder_path)
    else :
        #print(f"path: {folder_path} does not exists yet")
    
    print("YO β€’Β a user is manipulating audio inputs")
    
def split_process(audio, chosen_out_track):
    gr.Info("Cleaning your audio sample...")
    os.makedirs("out", exist_ok=True)
    write('test.wav', audio[0], audio[1])
    os.system("python3 -m demucs.separate -n mdx_extra_q -j 4 test.wav -o out")
    #return "./out/mdx_extra_q/test/vocals.wav","./out/mdx_extra_q/test/bass.wav","./out/mdx_extra_q/test/drums.wav","./out/mdx_extra_q/test/other.wav"
    if chosen_out_track == "vocals":
        print("Audio sample cleaned")
        return "./out/mdx_extra_q/test/vocals.wav"
    elif chosen_out_track == "bass":
        return "./out/mdx_extra_q/test/bass.wav"
    elif chosen_out_track == "drums":
        return "./out/mdx_extra_q/test/drums.wav"
    elif chosen_out_track == "other":
        return "./out/mdx_extra_q/test/other.wav"
    elif chosen_out_track == "all-in":
        return "test.wav"
        
def update_selection(selected_state: gr.SelectData):
    c_image = characters[selected_state.index]["image"]
    c_title = characters[selected_state.index]["title"]
    c_speaker = characters[selected_state.index]["speaker"]

    return c_title, selected_state

    
def infer(prompt, input_wav_file, clean_audio, hidden_numpy_audio):
    print("""
β€”β€”β€”β€”β€”
NEW INFERENCE:
β€”β€”β€”β€”β€”β€”β€”
    """)
    if clean_audio is True :
        print("We want to clean audio sample")
        # Extract the file name without the extension
        new_name = os.path.splitext(os.path.basename(input_wav_file))[0]
        print(f"FILE BASENAME is: {new_name}")
        if os.path.exists(os.path.join("bark_voices", f"{new_name}_cleaned")):
            print("This file has already been cleaned")
            check_name = os.path.join("bark_voices", f"{new_name}_cleaned")
            source_path = os.path.join(check_name, f"{new_name}_cleaned.wav")
        else:
            print("This file is new, we need to clean and store it")
            source_path = split_process(hidden_numpy_audio, "vocals")
        
            # Rename the file
            new_path = os.path.join(os.path.dirname(source_path), f"{new_name}_cleaned.wav")
            os.rename(source_path, new_path)
            source_path = new_path
    else :
        print("We do NOT want to clean audio sample")
        # Path to your WAV file
        source_path = input_wav_file

    # Destination directory
    destination_directory = "bark_voices"

    # Extract the file name without the extension
    file_name = os.path.splitext(os.path.basename(source_path))[0]

    # Construct the full destination directory path
    destination_path = os.path.join(destination_directory, file_name)

    # Create the new directory
    os.makedirs(destination_path, exist_ok=True)

    # Move the WAV file to the new directory
    shutil.move(source_path, os.path.join(destination_path, f"{file_name}.wav"))

    # β€”β€”β€”β€”β€”
    
    # Split the text into sentences based on common punctuation marks
    sentences = re.split(r'(?<=[.!?])\s+', prompt)
    
    # Keep only the first MAX_NUMBER_SENTENCES sentences
    first_nb_sentences = sentences[:MAX_NUMBER_SENTENCES]
    
    # Join the selected sentences back into a single string
    limited_prompt = ' '.join(first_nb_sentences)

    gr.Info("Generating audio from prompt")
    tts.tts_to_file(text=limited_prompt,
                file_path="output.wav",
                voice_dir="bark_voices/",
                speaker=f"{file_name}")

    # List all the files and subdirectories in the given directory
    contents = os.listdir(f"bark_voices/{file_name}")

    # Print the contents
    for item in contents:
        print(item)  
    print("Preparing final waveform video ...")
    tts_video = gr.make_waveform(audio="output.wav")
    print(tts_video)
    print("FINISHED")
    return "output.wav", tts_video, gr.update(value=f"bark_voices/{file_name}/{contents[1]}", visible=True), gr.Group.update(visible=True), destination_path

def infer_from_c(prompt, c_name):
    print("""
β€”β€”β€”β€”β€”
NEW INFERENCE:
β€”β€”β€”β€”β€”β€”β€”
    """)
    print(f"USING VOICE LIBRARY: {c_name}")
    # Split the text into sentences based on common punctuation marks
    sentences = re.split(r'(?<=[.!?])\s+', prompt)
    
    # Keep only the first MAX_NUMBER_SENTENCES sentences
    first_nb_sentences = sentences[:MAX_NUMBER_SENTENCES]
    
    # Join the selected sentences back into a single string
    limited_prompt = ' '.join(first_nb_sentences)
    
    gr.Info(f"Generating audio from prompt with {c_name} ;)")
    tts.tts_to_file(text=limited_prompt,
                file_path="output.wav",
                voice_dir="examples/library/",
                speaker=f"{c_name}")
    
    print("Preparing final waveform video ...")
    tts_video = gr.make_waveform(audio="output.wav")
    print(tts_video)
    print("FINISHED")
    return "output.wav", tts_video, gr.update(value=f"examples/library/{c_name}/{c_name}.npz", visible=True), gr.Group.update(visible=True)


css = """
#col-container {max-width: 780px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.mic-wrap > button {
    width: 100%;
    height: 60px;
    font-size: 1.4em!important;
}
.record-icon.svelte-1thnwz {
    display: flex;
    position: relative;
    margin-right: var(--size-2);
    width: unset;
    height: unset;
}
span.record-icon > span.dot.svelte-1thnwz {
    width: 20px!important;
    height: 20px!important;
}
.animate-spin {
  animation: spin 1s linear infinite;
}
@keyframes spin {
  from {
      transform: rotate(0deg);
  }
  to {
      transform: rotate(360deg);
  }
}
#share-btn-container {
  display: flex; 
  padding-left: 0.5rem !important; 
  padding-right: 0.5rem !important; 
  background-color: #000000; 
  justify-content: center; 
  align-items: center; 
  border-radius: 9999px !important; 
  max-width: 15rem;
  height: 36px;
}
div#share-btn-container > div {
    flex-direction: row;
    background: black;
    align-items: center;
}
#share-btn-container:hover {
  background-color: #060606;
}
#share-btn {
  all: initial; 
  color: #ffffff;
  font-weight: 600; 
  cursor:pointer; 
  font-family: 'IBM Plex Sans', sans-serif; 
  margin-left: 0.5rem !important; 
  padding-top: 0.5rem !important; 
  padding-bottom: 0.5rem !important;
  right:0;
}
#share-btn * {
  all: unset;
}
#share-btn-container div:nth-child(-n+2){
  width: auto !important;
  min-height: 0px !important;
}
#share-btn-container .wrap {
  display: none !important;
}
#share-btn-container.hidden {
  display: none!important;
}
img[src*='#center'] { 
    display: block;
    margin: auto;
}
.footer {
        margin-bottom: 45px;
        margin-top: 10px;
        text-align: center;
        border-bottom: 1px solid #e5e5e5;
    }
    .footer>p {
        font-size: .8rem;
        display: inline-block;
        padding: 0 10px;
        transform: translateY(10px);
        background: white;
    }
    .dark .footer {
        border-color: #303030;
    }
    .dark .footer>p {
        background: #0b0f19;
    }

.disclaimer {
    text-align: left;
}
.disclaimer > p {
    font-size: .8rem;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        
        gr.Markdown("""
        <h1 style="text-align: center;">Coqui + Bark Voice Cloning</h1>
        <p style="text-align: center;">
        Mimic any voice character in less than 2 minutes with this <a href="https://tts.readthedocs.io/en/dev/models/bark.html" target="_blank">Coqui TTS + Bark</a> demo ! <br />
        Upload a clean 20 seconds WAV file of the vocal persona you want to mimic, <br />
        type your text-to-speech prompt and hit submit ! <br />
        </p>

        [![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg#center)](https://huggingface.co/spaces/fffiloni/instant-TTS-Bark-cloning?duplicate=true)
            
        """)
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(
                    label = "Text to speech prompt",
                    info = "One or two sentences at a time is better* (max: 10)",
                    placeholder = "Hello friend! How are you today?",
                    elem_id = "tts-prompt"
                )

                with gr.Tab("File upload"):
                    
                    with gr.Column():

                        if file_upload_available == "True": 
                            audio_in = gr.Audio(
                                label="WAV voice to clone", 
                                type="filepath",
                                source="upload"
                            )
                        else:
                            audio_in = gr.Audio(
                                label="WAV voice to clone", 
                                type="filepath",
                                source="upload",
                                interactive = False
                            )
                        clean_sample = gr.Checkbox(label="Clean sample ?", value=False)
                        hidden_audio_numpy = gr.Audio(type="numpy", visible=False)
                        submit_btn = gr.Button("Submit")
                
                with gr.Tab("Microphone"):
                    texts_samples = gr.Textbox(label = "Helpers", 
                                               info = "You can read out loud one of these sentences if you do not know what to record :)",
                                               value = """"Jazz, a quirky mix of groovy saxophones and wailing trumpets, echoes through the vibrant city streets."
β€”β€”β€”
"A majestic orchestra plays enchanting melodies, filling the air with harmony."
β€”β€”β€”
"The exquisite aroma of freshly baked bread wafts from a cozy bakery, enticing passersby."
β€”β€”β€”
"A thunderous roar shakes the ground as a massive jet takes off into the sky, leaving trails of white behind."
β€”β€”β€”
"Laughter erupts from a park where children play, their innocent voices rising like tinkling bells."
β€”β€”β€”
"Waves crash on the beach, and seagulls caw as they soar overhead, a symphony of nature's sounds."
β€”β€”β€”
"In the distance, a blacksmith hammers red-hot metal, the rhythmic clang punctuating the day."
β€”β€”β€”
"As evening falls, a soft hush blankets the world, crickets chirping in a soothing rhythm."
                                               """,
                                               interactive = False,
                                               lines = 5
                                              )
                    micro_in = gr.Audio(
                                label="Record voice to clone", 
                                type="filepath",
                                source="microphone",
                                interactive = True
                            )
                    clean_micro = gr.Checkbox(label="Clean sample ?", value=False)
                    micro_submit_btn = gr.Button("Submit")
                
                audio_in.upload(fn=load_hidden, inputs=[audio_in], outputs=[hidden_audio_numpy], queue=False)
                micro_in.stop_recording(fn=load_hidden_mic, inputs=[micro_in], outputs=[hidden_audio_numpy], queue=False)
                
                
                with gr.Tab("Voices Characters"):
                    selected_state = gr.State()
                    gallery_in = gr.Gallery(
                                label="Character Gallery", 
                                value=[(item["image"], item["title"]) for item in characters],
                                interactive = True,
                                allow_preview=False,
                                columns=3,
                                elem_id="gallery",
                                show_share_button=False
                            )
                    c_submit_btn = gr.Button("Submit")


            with gr.Column():
        
                cloned_out = gr.Audio(
                    label="Text to speech output",
                    visible = False
                )
        
                video_out = gr.Video(
                    label = "Waveform video",
                    elem_id = "voice-video-out"
                )
                
                npz_file = gr.File(
                    label = ".npz file",
                    visible = False
                )

                folder_path = gr.Textbox(visible=False)

                
                
                character_name = gr.Textbox(
                    label="Character Name", 
                    placeholder="Name that voice character",
                    elem_id = "character-name"
                )
                
                voice_description = gr.Textbox(
                    label="description", 
                    placeholder="How would you describe that voice ? ",
                    elem_id = "voice-description"
                )

                with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
                    community_icon = gr.HTML(community_icon_html)
                    loading_icon = gr.HTML(loading_icon_html)
                    share_button = gr.Button("Share with Community", elem_id="share-btn")
        
        share_button.click(None, [], [], _js=share_js, queue=False)
        
        gallery_in.select(
            update_selection,
            outputs=[character_name, selected_state],
            queue=False,
            show_progress=False,
        )
    
        audio_in.change(fn=wipe_npz_file, inputs=[folder_path], queue=False)
        micro_in.clear(fn=wipe_npz_file, inputs=[folder_path], queue=False)
    
        gr.Examples(
            examples = [
                [
                    "Once upon a time, in a cozy little shell, lived a friendly crab named Crabby. Crabby loved his cozy home, but he always felt like something was missing.",
                    "./examples/en_speaker_6.wav",
                    False,
                    None
                ],
                [ 
                    "It was a typical afternoon in the bustling city, the sun shining brightly through the windows of the packed courtroom. Three people sat at the bar, their faces etched with worry and anxiety. ",
                    "./examples/en_speaker_9.wav",
                    False,
                    None
                ],
            ],
            fn = infer,
            inputs = [
                prompt,
                audio_in,
                clean_sample,
                hidden_audio_numpy
            ],
            outputs = [
                cloned_out, 
                video_out,
                npz_file,
                share_group,
                folder_path
            ],
            cache_examples = False
        )
    
        gr.HTML("""
                <div class="footer">
                    <p>
                    Coqui + Bark Voice Cloning Demo by πŸ€— <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a>
                    </p>
                </div>
                <div class="disclaimer">
                    <h3> * DISCLAIMER </h3>
                    <p>
                        I hold no responsibility for the utilization or outcomes of audio content produced using the semantic constructs generated by this model. <br />
                        Please ensure that any application of this technology remains within legal and ethical boundaries. <br />
                        It is important to utilize this technology for ethical and legal purposes, upholding the standards of creativity and innovation.
                    </p>
                </div>
            """)
    
    submit_btn.click(
        fn = infer,
        inputs = [
            prompt,
            audio_in,
            clean_sample,
            hidden_audio_numpy
        ],
        outputs = [
            cloned_out, 
            video_out,
            npz_file,
            share_group,
            folder_path
        ]
    )

    micro_submit_btn.click(
        fn = infer,
        inputs = [
            prompt,
            micro_in,
            clean_micro,
            hidden_audio_numpy
        ],
        outputs = [
            cloned_out, 
            video_out,
            npz_file,
            share_group,
            folder_path
        ]
    )

    c_submit_btn.click(
        fn = infer_from_c,
        inputs = [
            prompt,
            character_name
        ],
        outputs = [
            cloned_out, 
            video_out,
            npz_file,
            share_group
        ]
    )

demo.queue(api_open=False, max_size=10).launch()