File size: 4,969 Bytes
9659078
5f924a4
 
9659078
5a84593
f523090
 
 
5a84593
 
 
 
 
 
 
9659078
 
 
 
 
5a84593
9659078
5f924a4
 
8302c0f
 
5f924a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e236784
9659078
8302c0f
9659078
a4b64d4
 
 
 
0435c60
 
 
 
 
 
 
8e00ffa
9659078
3c31edb
8302c0f
0435c60
 
 
 
 
f523090
0c32eee
 
 
 
 
 
 
0cdadc9
0bd14d2
0cdadc9
8302c0f
0cdadc9
 
 
 
 
 
 
 
 
 
8302c0f
 
 
 
 
0cdadc9
 
 
 
 
 
 
 
 
 
 
 
8302c0f
0cdadc9
8302c0f
 
0cdadc9
 
 
 
 
 
 
 
 
 
 
 
 
 
0bd14d2
 
 
 
 
 
 
 
 
 
 
 
0435c60
0bd14d2
 
 
0435c60
 
 
 
0bd14d2
 
0cdadc9
0bd14d2
 
0435c60
0bd14d2
 
 
0435c60
 
0bd14d2
 
 
 
 
 
 
 
 
0cdadc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bd14d2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
import os 
import shutil

from huggingface_hub import snapshot_download
import numpy as np
from scipy.io import wavfile

model_ids = [
    'suno/bark',
]
for model_id in model_ids:
    model_name = model_id.split('/')[-1]
    snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')

from TTS.tts.configs.bark_config import BarkConfig
from TTS.tts.models.bark import Bark

config = BarkConfig()
model = Bark.init_from_config(config)
model.load_checkpoint(config, checkpoint_dir="checkpoints/bark", eval=True)

def infer(prompt, input_wav_file):

    print("SAVING THE AUDIO FILE TO WHERE IT BELONGS")

    # Path to your WAV file
    source_path = input_wav_file

    # Destination directory
    destination_directory = "bark_voices"

    # Extract the file name without the extension
    file_name = os.path.splitext(os.path.basename(source_path))[0]

    # Construct the full destination directory path
    destination_path = os.path.join(destination_directory, file_name)

    # Create the new directory
    os.makedirs(destination_path, exist_ok=True)

    # Move the WAV file to the new directory
    shutil.move(source_path, os.path.join(destination_path, f"{file_name}.wav"))

    text = prompt

    print("SYNTHETIZING...")
    # with random speaker
    #output_dict = model.synthesize(text, config, speaker_id="random", voice_dirs=None)

    # cloning a speaker.
    # It assumes that you have a speaker file in `bark_voices/speaker_n/speaker.wav` or `bark_voices/speaker_n/speaker.npz`
    output_dict = model.synthesize(
        text, 
        config, 
        speaker_id=f"{file_name}", 
        voice_dirs="bark_voices/"
    )
    
    print(output_dict)

    sample_rate = 24000  # Replace with the actual sample rate
    print("WRITING WAVE FILE")
    wavfile.write(
        'output.wav', 
        sample_rate, 
        output_dict['wav']
    )

    # List all the files and subdirectories in the given directory
    contents = os.listdir(f"bark_voices/{file_name}")

    # Print the contents
    for item in contents:
        print(item)   
    
    return "output.wav", f"bark_voices/{file_name}/{contents[1]}", gr.update(visible=False), gr.update(visible=True)

def infer_with_npz(prompt, input_wav_file):
    print("NEW GENERATION WITH EXISTING .NPZ")
    # Path to your WAV file
    source_path = input_wav_file
    # Extract the file name without the extension
    file_name = os.path.splitext(os.path.basename(source_path))[0]
    # List all the files and subdirectories in the given directory
    contents = os.listdir(f"bark_voices/{file_name}")
    # Print the contents
    for item in contents:
        print(item)   
    
    first_item = contents[0]  # Index 0 corresponds to the first item
    item_path = os.path.join(f"bark_voices/{file_name}", first_item)    
    os.remove(item_path)

    print("BEGINNING GENERATION")
    # cloning a speaker.
    text = prompt
    # It assumes that you have a speaker file in `bark_voices/speaker_n/speaker.npz`
    output_dict = model.synthesize(
        text, 
        config, 
        speaker_id=f"{file_name}", 
        voice_dirs="bark_voices/"
    )
    
    print(output_dict)

    print("WRITING WAVE FILE")

    sample_rate = 24000  # Replace with the actual sample rate
    
    wavfile.write(
        'output.wav', 
        sample_rate, 
        output_dict['wav']
    )

    # Print again the contents
    for item in contents:
        print(item)   

    return 'output.wav'

def uploaded_audio():
    return gr.update(visible=True), gr.update(visible=False)
css = """
#col-container {max-width: 780px; margin-left: auto; margin-right: auto;}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        
        gr.HTML("""
        <h1>Instant Voice Cloning</h1>
        """)
        
        prompt = gr.Textbox(
            label="Text to speech prompt"
        )
        
        audio_in = gr.Audio(
            label="WAV voice to clone", 
            type="filepath",
            source="upload"
        )
        
        submit_btn = gr.Button("Submit")
        submit_with_npz_btn = gr.Button("Submit 2", visible=False)
        
        cloned_out = gr.Audio(
            label="Text to speech output"
        )
        
        npz_file = gr.File(
            label=".npz file"
        )
    
    submit_btn.click(
        fn = infer,
        inputs = [
            prompt,
            audio_in
        ],
        outputs = [
            cloned_out, 
            npz_file,
            submit_btn,
            submit_with_npz_btn
        ]
    )

    submit_with_npz_btn.click(
        fn = infer_with_npz, 
        inputs = [
            prompt,
            audio_in
        ],
        outputs = [
            cloned_out
        ]
    )

    audio_in.upload(
        fn=uploaded_audio,
        inputs=[],
        outputs=[
            submit_btn,
            submit_with_npz_btn
        ]
    )

demo.queue().launch()