File size: 5,677 Bytes
027e8a9 b345f1b 027e8a9 b345f1b 027e8a9 b345f1b 027e8a9 b345f1b 933471e 4208876 933471e b345f1b 720f703 b345f1b e71cfc7 b345f1b f4675b5 b345f1b 933471e b345f1b 3b6a87c b345f1b 027e8a9 b345f1b 027e8a9 b345f1b 720f703 b345f1b 70f5d8a b345f1b 70f5d8a b345f1b 933471e 70f5d8a 933471e 027e8a9 b345f1b 70f5d8a 027e8a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import gradio as gr
from gradio_client import Client
import cv2
from moviepy.editor import *
# 1. extract and store 1 image every 5 images from video input
# 2. extract audio
# 3. for each image from extracted_images, get caption from caption model and concatenate into list
# 4. for audio, ask audio questioning model to describe sound/scene
# 5. give all to LLM, and ask it to resume, according to image caption list combined to audio caption
import re
import torch
from transformers import pipeline
zephyr_model = "HuggingFaceH4/zephyr-7b-beta"
pipe = pipeline("text-generation", model=zephyr_model, torch_dtype=torch.bfloat16, device_map="auto")
standard_sys = f"""
You will be provided a list of visual events, and an audio description. All these informations come from a single video.
List of visual events are actually images extracted from this video every 12 frames.
Notice that the video is a short shot, so the people depicted in diferrent images are usually always the same people.
Audio events are actually the description from the audio of the video.
Your job is to use these information to provide a short resume about what is happening in the video.
"""
def extract_frames(video_in, interval=24, output_format='.jpg'):
"""Extract frames from a video at a specified interval and store them in a list.
Args:
- video_in: string or path-like object pointing to the video file
- interval: integer specifying how many frames apart to extract images (default: 5)
- output_format: string indicating desired format for saved images (default: '.jpg')
Returns:
A list of strings containing paths to saved images.
"""
# Initialize variables
vidcap = cv2.VideoCapture(video_in)
frames = []
count = 0
# Loop through frames until there are no more
while True:
success, image = vidcap.read()
# Check if successful read and not past end of video
if success:
print('Read a new frame:', success)
# Save current frame if it meets criteria
if count % interval == 0:
filename = f'frame_{count // interval}{output_format}'
frames.append(filename)
cv2.imwrite(filename, image)
print(f'Saved {filename}')
# Increment counter
count += 1
# Break out of loop when done reading frames
else:
break
# Close video capture
vidcap.release()
print('Done extracting frames!')
return frames
def process_image(image_in):
client = Client("https://vikhyatk-moondream1.hf.space/")
result = client.predict(
image_in, # filepath in 'image' Image component
"Describe precisely the image in one sentence.", # str in 'Question' Textbox component
api_name="/answer_question"
#api_name="/predict"
)
print(result)
return result
def extract_audio(video_path):
video_clip = VideoFileClip(video_path)
audio_clip = video_clip.audio
audio_clip.write_audiofile("output_audio.mp3")
return "output_audio.mp3"
def get_salmonn(audio_in):
salmonn_prompt = "Please describe the audio"
client = Client("fffiloni/SALMONN-7B-gradio")
result = client.predict(
audio_in, # filepath in 'Audio' Audio component
salmonn_prompt, # str in 'User question' Textbox component
4, # float (numeric value between 1 and 10) in 'beam search numbers' Slider component
1, # float (numeric value between 0.8 and 2.0) in 'temperature' Slider component
0.9, # float (numeric value between 0.1 and 1.0) in 'top p' Slider component
api_name="/gradio_answer"
)
print(result)
return result
def llm_process(user_prompt):
agent_maker_sys = standard_sys
instruction = f"""
<|system|>
{agent_maker_sys}</s>
<|user|>
"""
prompt = f"{instruction.strip()}\n{user_prompt}</s>"
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
pattern = r'\<\|system\|\>(.*?)\<\|assistant\|\>'
cleaned_text = re.sub(pattern, '', outputs[0]["generated_text"], flags=re.DOTALL)
print(f"SUGGESTED video description: {cleaned_text}")
return cleaned_text.lstrip("\n")
def infer(video_in):
# Extract frames from a video
frame_files = extract_frames(video_in)
# Process each extracted frame and collect results in a list
processed_texts = []
for frame_file in frame_files:
text = process_image(frame_file)
processed_texts.append(text)
print(processed_texts)
# Convert processed_texts list to a string list with line breaks
string_list = '\n'.join(processed_texts)
# Extract audio from video
extracted_audio = extract_audio(video_in)
print(extracted_audio)
# Get description of audio content
audio_content_described = get_salmonn(extracted_audio)
# Assemble captions
formatted_captions = f"""
### Visual events:\n{string_list}\n ### Audio events:\n{audio_content_described}
"""
print(formatted_captions)
# Send formatted captions to LLM
video_description_from_llm = llm_process(formatted_captions)
return video_description_from_llm
with gr.Blocks() as demo :
with gr.Column(elem_id="col-container"):
gr.HTML("""
<h2 style="text-align: center;">Video description</h2>
""")
video_in = gr.Video(label="Video input")
submit_btn = gr.Button("Submit")
video_description = gr.Textbox(label="Video description")
submit_btn.click(
fn = infer,
inputs = [video_in],
outputs = [video_description]
)
demo.queue().launch() |