File size: 2,892 Bytes
7ae0a5f
 
 
c263cca
 
9e85783
7ae0a5f
 
fd14c39
8f43f6f
 
 
 
 
 
 
9e85783
c263cca
8f43f6f
 
c263cca
8f43f6f
 
 
 
 
 
 
 
 
 
 
 
 
 
a263f51
c263cca
a263f51
7ae0a5f
a263f51
8f43f6f
 
 
7ae0a5f
 
a263f51
7ae0a5f
 
 
c263cca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e16425f
7ae0a5f
c263cca
7ae0a5f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from PIL import Image
import io

@st.cache_resource
def load_model():
    model_name = "Qwen/Qwen2-VL-7B-Instruct"
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
        model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True)
        return tokenizer, model
    except Exception as e:
        st.error(f"Ошибка при загрузке модели: {str(e)}")
        return None, None

def generate_response(prompt, image, tokenizer, model):
    if tokenizer is None or model is None:
        return "Модель не загружена. Пожалуйста, проверьте ошибки выше."
    
    try:
        if image:
            image = Image.open(image).convert('RGB')
            inputs = tokenizer.from_pretrained(prompt, images=[image], return_tensors='pt').to(model.device)
        else:
            inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
        
        with torch.no_grad():
            outputs = model.generate(**inputs, max_new_tokens=100)
        
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return response
    except Exception as e:
        return f"Ошибка при генерации ответа: {str(e)}"

st.title("Чат с Qwen VL-7B-Instruct")

tokenizer, model = load_model()

if tokenizer is None or model is None:
    st.warning("Модель не загружена. Приложение может работать некорректно.")

if "messages" not in st.session_state:
    st.session_state.messages = []

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])
        if "image" in message:
            st.image(message["image"])

prompt = st.chat_input("Введите ваше сообщение")
uploaded_file = st.file_uploader("Загрузите изображение (необязательно)", type=["png", "jpg", "jpeg"])

if prompt or uploaded_file:
    if uploaded_file:
        image = Image.open(uploaded_file)
        st.session_state.messages.append({"role": "user", "content": prompt or "Опишите это изображение", "image": uploaded_file})
        with st.chat_message("user"):
            if prompt:
                st.markdown(prompt)
            st.image(image)
    else:
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.markdown(prompt)
    
    with st.chat_message("assistant"):
        response = generate_response(prompt, uploaded_file, tokenizer, model)
        st.markdown(response)
    
    st.session_state.messages.append({"role": "assistant", "content": response})