File size: 7,217 Bytes
f615b93
 
df2b51a
f615b93
 
 
 
 
 
df2b51a
2f96c18
df2b51a
f615b93
 
 
 
 
 
 
 
3d0f58b
f615b93
 
 
 
 
 
 
 
 
 
df2b51a
f615b93
df2b51a
f615b93
 
df2b51a
2f96c18
df2b51a
f615b93
 
 
 
2f96c18
f615b93
 
 
df2b51a
f615b93
df2b51a
f615b93
 
 
921780e
f615b93
921780e
f615b93
df2b51a
921780e
df2b51a
2f96c18
 
 
 
f615b93
921780e
 
 
 
 
df2b51a
 
2f96c18
 
 
 
 
 
 
f615b93
2f96c18
df2b51a
 
 
 
2f96c18
df2b51a
f615b93
921780e
df2b51a
 
921780e
df2b51a
f615b93
df2b51a
f615b93
 
 
 
 
2f96c18
df2b51a
921780e
f615b93
 
921780e
f615b93
921780e
f615b93
 
2f96c18
f615b93
df2b51a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f615b93
 
df2b51a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import faiss
import gradio as gr
import numpy as np
import requests

from pypdf import PdfReader
from sentence_transformers import SentenceTransformer

################################################################################
# 1. PDF Parsing and Chunking
################################################################################
def extract_pdf_text(pdf_file) -> str:
    reader = PdfReader(pdf_file)
    all_text = []
    for page in reader.pages:
        text = page.extract_text() or ""
        all_text.append(text.strip())
    return "\n".join(all_text)

def chunk_text(text, chunk_size=300, overlap=50):
    words = text.split()
    chunks = []
    start = 0
    while start < len(words):
        end = start + chunk_size
        chunk = words[start:end]
        chunks.append(" ".join(chunk))
        start += (chunk_size - overlap)
    return chunks

################################################################################
# 2. Embedding Model
################################################################################
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")

################################################################################
# 3. Build FAISS Index
################################################################################
def build_faiss_index(chunks):
    chunk_embeddings = embedding_model.encode(chunks, show_progress_bar=False)
    chunk_embeddings = np.array(chunk_embeddings, dtype='float32')
    dimension = chunk_embeddings.shape[1]
    index = faiss.IndexFlatL2(dimension)
    index.add(chunk_embeddings)
    return index, chunk_embeddings

################################################################################
# 4. Retrieval Function
################################################################################
def retrieve_chunks(query, index, chunks, top_k=3):
    query_embedding = embedding_model.encode([query], show_progress_bar=False)
    query_embedding = np.array(query_embedding, dtype='float32')
    
    distances, indices = index.search(query_embedding, top_k)
    return [chunks[i] for i in indices[0]]

################################################################################
# 5. Gemini LLM Integration
################################################################################
def gemini_generate(prompt):
    gemini_api_key = os.environ.get("GEMINI_API_KEY", "")
    if not gemini_api_key:
        return "Error: No GEMINI_API_KEY found in environment variables."

    url = (
        "https://generativelanguage.googleapis.com/"
        "v1beta/models/gemini-1.5-flash:generateContent"
        f"?key={gemini_api_key}"
    )

    data = {
        "contents": [
            {
                "parts": [
                    {"text": prompt}
                ]
            }
        ]
    }
    headers = {"Content-Type": "application/json"}
    response = requests.post(url, headers=headers, json=data)
    
    if response.status_code != 200:
        return f"Error {response.status_code}: {response.text}"

    r_data = response.json()
    try:
        return r_data["candidates"][0]["content"]["parts"][0]["text"]
    except Exception:
        return f"Parsing error or unexpected response structure: {r_data}"

################################################################################
# 6. RAG QA Function
################################################################################
def answer_question_with_RAG(user_question, index, chunks):
    relevant_chunks = retrieve_chunks(user_question, index, chunks, top_k=3)
    context = "\n\n".join(relevant_chunks)
    prompt = f"""
    You are an AI assistant that knows the details from the uploaded research paper.
    Answer the user's question accurately using the context below.
    If something is not in the context, say you don't know.

    Context:
    {context}

    User's question: {user_question}

    Answer:
    """
    return gemini_generate(prompt)

################################################################################
# 7. Gradio Interface
################################################################################
def process_pdf(pdf_file):
    if pdf_file is None:
        return None, "Please upload a PDF file."

    text = extract_pdf_text(pdf_file.name)
    if not text:
        return None, "No text found in PDF."

    chunks = chunk_text(text, chunk_size=300, overlap=50)
    if not chunks:
        return None, "No valid text to chunk."

    faiss_index, _ = build_faiss_index(chunks)
    return (faiss_index, chunks), "PDF processed successfully!"

def chat_with_paper(query, state):
    if not state:
        return "Please upload and process a PDF first."
    faiss_index, doc_chunks = state
    if not query or not query.strip():
        return "Please enter a valid question."
    return answer_question_with_RAG(query, faiss_index, doc_chunks)

demo_theme = gr.themes.Soft(primary_hue="slate")

css_code = """
body {
    background-color: #E6F7FF !important; /* Lightest blue */
    margin: 0; 
    padding: 0;
}

.block > .inside {
    margin: auto !important;
    max-width: 900px !important;
    border: 4px solid black !important;
    border-radius: 10px !important;
    background-color: #FFFFFF !important;
    padding: 20px !important;
}

#icon-container {
    text-align: center !important;
    margin-top: 1rem !important;
    margin-bottom: 1rem !important;
}

#app-title {
    text-align: center !important;
    font-size: 3rem !important;
    font-weight: 900 !important;
    margin-bottom: 0.5rem !important;
    margin-top: 0.5rem !important;
}

#app-welcome {
    text-align: center !important;
    font-size: 1.5rem !important;
    color: #444 !important;
    margin-bottom: 25px !important;
    font-weight: 700 !important;
}

button {
    background-color: #3CB371 !important;
    color: #ffffff !important;
    border: none !important;
    font-weight: 600 !important;
    cursor: pointer;
}

button:hover {
    background-color: #2E8B57 !important;
}

textarea, input[type="text"] {
    text-align: center !important;
}
"""

with gr.Blocks(theme=demo_theme, css=css_code) as demo:
    gr.Markdown("""
    <div id="icon-container">
        <img src="https://i.ibb.co/3Wp3yBZ/ai-icon.png" alt="AI icon" style="width:100px;">
    </div>
    """)
    
    gr.Markdown("<div id='app-title'>AI-Powered Personal Research Assistant</div>")
    gr.Markdown("<div id='app-welcome'>Welcome! How may I help you?</div>")

    state = gr.State()

    with gr.Row():
        pdf_input = gr.File(label="Upload your research paper (PDF)", file_types=[".pdf"])
        process_button = gr.Button("Process PDF")

    status_output = gr.Textbox(label="Status", interactive=False)

    process_button.click(
        fn=process_pdf,
        inputs=pdf_input,
        outputs=[state, status_output]
    )

    with gr.Row():
        user_query = gr.Textbox(label="Ask a question about your research paper:")
        ask_button = gr.Button("Get Answer")
    answer_output = gr.Textbox(label="Answer")

    ask_button.click(
        fn=chat_with_paper,
        inputs=[user_query, state],
        outputs=answer_output
    )

demo.launch()