Spaces:
Sleeping
Sleeping
File size: 8,372 Bytes
db681f0 a95b69d 93fecfc db681f0 be7bcc5 93fecfc be7bcc5 a8e12af be7bcc5 93fecfc db681f0 a95b69d be7bcc5 a95b69d db681f0 a95b69d db681f0 a95b69d db681f0 a95b69d db681f0 a95b69d 815b94d a95b69d 1b337ee a95b69d 93fecfc a95b69d db681f0 93fecfc ffb8bf4 93fecfc d6d190e 93fecfc 6b1c27d 93fecfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import gradio as gr
import subprocess
from PIL import Image
import tempfile
import os
import yaml
import base64
import evaluate
def resize_image(image, base_height):
if image.size[1] == base_height:
return image
# Calculate aspect ratio
w_percent = base_height / float(image.size[1])
w_size = int(float(image.size[0]) * float(w_percent))
# Resize the image
return image.resize((w_size, base_height), Image.Resampling.LANCZOS)
# Get images and respective transcriptions from the examples directory
def get_example_data(folder_path="./examples/"):
example_data = []
# Get list of all files in the folder
all_files = os.listdir(folder_path)
# Loop through the file list
for file_name in all_files:
file_path = os.path.join(folder_path, file_name)
# Check if the file is an image (.png)
if file_name.endswith(".jpg"):
# Construct the corresponding .txt filename (same name)
corresponding_text_file_name = file_name.replace(".jpg", ".txt")
corresponding_text_file_path = os.path.join(folder_path, corresponding_text_file_name)
# Initialize to a default value
transcription = "Transcription not found."
# Try to read the content from the .txt file
try:
with open(corresponding_text_file_path, "r") as f:
transcription = f.read().strip()
except FileNotFoundError:
pass # If the corresponding .txt file is not found, leave the default value
example_data.append([file_path, transcription])
return example_data
def predict(input_image: Image.Image, ground_truth):
cer = None
try:
# Try to resize the image to a fixed height of 128 pixels
try:
input_image = resize_image(input_image, 128)
except Exception as e:
print(f"Image resizing failed: {e}")
return f"Image resizing failed: {e}"
# Used as a context manager. Takes care of cleaning up the directory.
# Even if an error is raised within the with block, the directory is removed.
# No finally block needed
with tempfile.TemporaryDirectory() as temp_dir:
temp_image_path = os.path.join(temp_dir, 'temp_image.jpg')
temp_list_path = os.path.join(temp_dir, 'temp_img_list.txt')
temp_config_path = os.path.join(temp_dir, 'temp_config.yaml')
input_image.save(temp_image_path)
# Create a temporary img_list file
with open(temp_list_path, 'w') as f:
f.write(temp_image_path)
# Read the original config file and create a temporary one
with open('my_decode_config.yaml', 'r') as f:
config_data = yaml.safe_load(f)
config_data['img_list'] = temp_list_path
with open(temp_config_path, 'w') as f:
yaml.dump(config_data, f)
try:
subprocess.run(f"pylaia-htr-decode-ctc --config {temp_config_path} | tee predict.txt", shell=True, check=True)
except subprocess.CalledProcessError as e:
print(f"Command failed with error {e.returncode}, output:\n{e.output}")
# # Write the output to predict.txt
# with open('predict.txt', 'wb') as f:
# f.write(output)
# Read the output from predict.txt
if os.path.exists('predict.txt'):
with open('predict.txt', 'r') as f:
output_line = f.read().strip().split('\n')[-1] # Last line
_, prediction = output_line.split(' ', 1) # split only at the first space
else:
print('predict.txt does not exist')
if ground_truth is not None and ground_truth.strip() != "":
# Debug: Print lengths before computing metric
print("Number of predictions:", len(prediction))
print("Number of references:", len(ground_truth))
# Check if lengths match
if len(prediction) != len(ground_truth):
print("Mismatch in number of predictions and references.")
print("Predictions:", prediction)
print("References:", ground_truth)
print("\n")
cer = cer_metric.compute(predictions=[prediction], references=[ground_truth])
# cer = f"{cer:.3f}"
else:
cer = "Ground truth not provided"
return prediction, cer
except subprocess.CalledProcessError as e:
return f"Command failed with error {e.returncode}"
# Encode images
with open("assets/header.png", "rb") as img_file:
logo_html = base64.b64encode(img_file.read()).decode('utf-8')
with open("assets/teklia_logo.png", "rb") as img_file:
footer_html = base64.b64encode(img_file.read()).decode('utf-8')
title = """
<h1 style='text-align: center'> Hugging Face x Teklia: PyLaia HTR demo</p>
"""
description = """
[PyLaia](https://github.com/jpuigcerver/PyLaia) is a device agnostic, PyTorch-based, deep learning toolkit \
for handwritten document analysis.
This model was trained using PyLaia library on Norwegian historical documents ([NorHand Dataset](https://zenodo.org/record/6542056)) \
during the [HUGIN-MUNIN project](https://hugin-munin-project.github.io) for handwritten text recognition (HTR).
* HF `model card`: [Teklia/pylaia-huginmunin](https://huggingface.co/Teklia/pylaia-huginmunin) | \
[A Comprehensive Comparison of Open-Source Libraries for Handwritten Text Recognition in Norwegian](https://doi.org/10.1007/978-3-031-06555-2_27)
"""
examples = get_example_data()
# pip install evaluate
# pip install jiwer
cer_metric = evaluate.load("cer")
with gr.Blocks(
theme=gr.themes.Soft(),
title="PyLaia HTR",
) as demo:
gr.HTML(
f"""
<div style='display: flex; justify-content: center; width: 100%;'>
<img src='data:image/png;base64,{logo_html}' class='img-fluid' width='350px'>
</div>
"""
)
#174x60
title = gr.HTML(title)
description = gr.Markdown(description)
with gr.Row():
with gr.Column(variant="panel"):
input = gr.components.Image(type="pil", label="Input image:")
with gr.Row():
btn_clear = gr.Button(value="Clear")
button = gr.Button(value="Submit")
with gr.Column(variant="panel"):
output = gr.components.Textbox(label="Generated text:")
ground_truth = gr.components.Textbox(value="", placeholder="Provide the ground truth, if available.", label="Ground truth:")
cer_output = gr.components.Textbox(label="CER:")
with gr.Row():
with gr.Accordion(label="Choose an example from test set:", open=False):
gr.Examples(
examples=examples,
inputs = [input, ground_truth],
label=None,
)
with gr.Row():
gr.HTML(
f"""
<div style="display: flex; align-items: center; justify-content: center">
<a href="https://teklia.com/" target="_blank">
<img src="data:image/png;base64,{footer_html}" style="width: 100px; height: 80px; object-fit: contain; margin-right: 5px; margin-bottom: 5px">
</a>
<p style="font-size: 13px">
| <a href="https://huggingface.co/Teklia">Teklia models on Hugging Face</a>
</p>
</div>
"""
)
button.click(predict, inputs=[input, ground_truth], outputs=[output, cer_output])
btn_clear.click(lambda: [None, "", "", ""], outputs=[input, output, ground_truth, cer_output])
# # Try to force light mode
# js = """
# function () {
# gradioURL = window.location.href
# if (!gradioURL.endsWith('?__theme=light')) {
# window.location.replace(gradioURL + '?__theme=light');
# }
# }"""
# demo.load(_js=js)
if __name__ == "__main__":
demo.launch(favicon_path="teklia_icon_grey.png")
|