Multilingual-VQA / apps /article.py
gchhablani's picture
Fix ToC header
cd12ada
raw
history blame
1.87 kB
import streamlit as st
from apps.utils import read_markdown
from streamlit_tensorboard import st_tensorboard
from .utils import Toc
def app(state):
toc = Toc()
st.info("Welcome to our Multilingual-VQA demo. Please use the navigation sidebar to move to our demo, or scroll below to read all about our project. πŸ€—")
st.header("Table of contents")
toc.placeholder()
toc.header("Introduction and Motivation")
st.write(read_markdown("intro.md"))
toc.subheader("Novel Contributions")
st.write(read_markdown("contributions.md"))
toc.header("Methodology")
toc.subheader("Pre-training")
st.write(read_markdown("pretraining.md"))
st.image(
"./misc/article/Multilingual-VQA.png",
caption="Masked LM model for Image-text Pre-training.",
)
st.write("**Training Logs**")
st_tensorboard(logdir='./logs/pretrain_logs', port=6006)
toc.subheader("Finetuning")
st.write(read_markdown("finetuning.md"))
st.write("**Training Logs**")
st_tensorboard(logdir='./logs/finetune_logs', port=6007)
toc.header("Challenges and Technical Difficulties")
st.write(read_markdown("challenges.md"))
toc.header("Limitations")
st.write(read_markdown("limitations.md"))
toc.header("Conclusion, Future Work, and Social Impact")
toc.subheader("Conclusion")
st.write(read_markdown("conclusion.md"))
toc.subheader("Future Work")
st.write(read_markdown("future_work.md"))
toc.subheader("Social Impact")
st.write(read_markdown("social_impact.md"))
toc.header("References")
st.write(read_markdown("references.md"))
toc.header("Checkpoints")
st.write(read_markdown("checkpoints.md"))
toc.subheader("Other Checkpoints")
st.write(read_markdown("other_checkpoints.md"))
toc.header("Acknowledgements")
st.write(read_markdown("acknowledgements.md"))