Spaces:
Runtime error
Runtime error
File size: 1,441 Bytes
05942ee 698432b 05942ee 75f8f92 05942ee 75f8f92 05942ee 75f8f92 05942ee 75f8f92 05942ee 75f8f92 814e62c 05942ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import streamlit as st
from transformers import AutoTokenizer,AutoModelForSeq2SeqLM
@st.cache(persist=True)
def load_model(input_complex_sentence,model):
base_path = "flax-community/"
model_path = base_path + model
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
tokenized_sentence = tokenizer(input_complex_sentence,return_tensors="pt")
result = model.generate(tokenized_sentence['input_ids'],attention_mask = tokenized_sentence['attention_mask'],max_length=256,num_beams=5)
generated_sentence = tokenizer.decode(result[0],skip_special_tokens=True)
return generated_sentence
def main():
st.title("Sentence Split in English using T5 Variants")
st.write("Sentence Split is the task of dividing a long Sentence into multiple Sentences")
model = st.sidebar.selectbox(
"Please Choose the Model",
("t5-base-wikisplit","t5-v1_1-base-wikisplit", "byt5-base-wikisplit","t5-large-wikisplit"))
st.write("Model Selected : ", model)
example = "Mary likes to play football in her freetime whenever she meets with her friends that are very nice people."
input_complex_sentence = st.text_area("Please type a long Sentence to split",example)
if st.button('✂️'):
with st.spinner("Spliting Sentence...🧠"):
generated_sentence = load_model(input_complex_sentence, model)
st.write(generated_sentence)
if __name__ == "__main__":
main()
|