Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoTokenizer,AutoModelForSeq2SeqLM | |
def load_model(input_complex_sentence,model): | |
base_path = "flax-community/" | |
model_path = base_path + model | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_path) | |
tokenized_sentence = tokenizer(input_complex_sentence,return_tensors="pt") | |
result = model.generate(tokenized_sentence['input_ids'],attention_mask = tokenized_sentence['attention_mask'],max_length=256,num_beams=5) | |
generated_sentence = tokenizer.decode(result[0],skip_special_tokens=True) | |
return generated_sentence | |
def main(): | |
st.title("Sentence Split in English using T5 Variants") | |
st.write("Sentence Split is the task of dividing a long Sentence into multiple Sentences") | |
model = st.sidebar.selectbox( | |
"Please Choose the Model", | |
("t5-base-wikisplit","t5-v1_1-base-wikisplit", "byt5-base-wikisplit","t5-large-wikisplit")) | |
st.write("Model Selected : ", model) | |
example = "Mary likes to play football in her freetime whenever she meets with her friends that are very nice people." | |
input_complex_sentence = st.text_area("Please type a long Sentence to split",example) | |
if st.button('✂️'): | |
with st.spinner("Spliting Sentence...🧠"): | |
generated_sentence = load_model(input_complex_sentence, model) | |
st.write(generated_sentence) | |
if __name__ == "__main__": | |
main() | |