FluxMusicGUI / app.py
flosstradamus's picture
Update app.py
b300542 verified
raw
history blame
8.91 kB
import os
import torch
import gradio as gr
from einops import rearrange, repeat
from diffusers import AutoencoderKL
from transformers import SpeechT5HifiGan
from scipy.io import wavfile
import glob
import random
import numpy as np
import re
# Import necessary functions and classes
from utils import load_t5, load_clap
from train import RF
from constants import build_model
# Global variables to store loaded models and resources
global_model = None
global_t5 = None
global_clap = None
global_vae = None
global_vocoder = None
global_diffusion = None
# Set the models directory
MODELS_DIR = "/content/models"
GENERATIONS_DIR = "/content/generations"
def prepare(t5, clip, img, prompt):
bs, c, h, w = img.shape
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
if isinstance(prompt, str):
prompt = [prompt]
# Generate text embeddings
txt = t5(prompt)
if txt.shape[0] == 1 and bs > 1:
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
txt_ids = torch.zeros(bs, txt.shape[1], 3)
vec = clip(prompt)
if vec.shape[0] == 1 and bs > 1:
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
return img, {
"img_ids": img_ids.to(img.device),
"txt": txt.to(img.device),
"txt_ids": txt_ids.to(img.device),
"y": vec.to(img.device),
}
def unload_current_model():
global global_model
if global_model is not None:
del global_model
torch.cuda.empty_cache()
global_model = None
def load_model(model_name):
global global_model
device = "cuda" if torch.cuda.is_available() else "cpu"
unload_current_model()
# Determine model size from filename
if 'musicflow_b' in model_name:
model_size = "base"
elif 'musicflow_g' in model_name:
model_size = "giant"
elif 'musicflow_l' in model_name:
model_size = "large"
elif 'musicflow_s' in model_name:
model_size = "small"
else:
model_size = "base" # Default to base if unrecognized
print(f"Loading {model_size} model: {model_name}")
model_path = os.path.join(MODELS_DIR, model_name)
global_model = build_model(model_size).to(device)
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage, weights_only=True)
global_model.load_state_dict(state_dict['ema'])
global_model.eval()
global_model.model_path = model_path
def load_resources():
global global_t5, global_clap, global_vae, global_vocoder, global_diffusion
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Loading T5 and CLAP models...")
global_t5 = load_t5(device, max_length=256)
global_clap = load_clap(device, max_length=256)
print("Loading VAE and vocoder...")
global_vae = AutoencoderKL.from_pretrained('cvssp/audioldm2', subfolder="vae").to(device)
global_vocoder = SpeechT5HifiGan.from_pretrained('cvssp/audioldm2', subfolder="vocoder").to(device)
print("Initializing diffusion...")
global_diffusion = RF()
print("Base resources loaded successfully!")
def generate_music(prompt, seed, cfg_scale, steps, duration, progress=gr.Progress()):
global global_model, global_t5, global_clap, global_vae, global_vocoder, global_diffusion
if global_model is None:
return "Please select a model first.", None
if seed == 0:
seed = random.randint(1, 1000000)
print(f"Using seed: {seed}")
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.manual_seed(seed)
torch.set_grad_enabled(False)
# Calculate the number of segments needed for the desired duration
segment_duration = 10 # Each segment is 10 seconds
num_segments = int(np.ceil(duration / segment_duration))
all_waveforms = []
for i in range(num_segments):
progress(i / num_segments, desc=f"Generating segment {i+1}/{num_segments}")
# Use the same seed for all segments
torch.manual_seed(seed + i) # Add i to slightly vary each segment while maintaining consistency
latent_size = (256, 16)
conds_txt = [prompt]
unconds_txt = ["low quality, gentle"]
L = len(conds_txt)
init_noise = torch.randn(L, 8, latent_size[0], latent_size[1]).to(device)
img, conds = prepare(global_t5, global_clap, init_noise, conds_txt)
_, unconds = prepare(global_t5, global_clap, init_noise, unconds_txt)
with torch.autocast(device_type='cuda'):
images = global_diffusion.sample_with_xps(global_model, img, conds=conds, null_cond=unconds, sample_steps=steps, cfg=cfg_scale)
images = rearrange(
images[-1],
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=128,
w=8,
ph=2,
pw=2,)
latents = 1 / global_vae.config.scaling_factor * images
mel_spectrogram = global_vae.decode(latents).sample
x_i = mel_spectrogram[0]
if x_i.dim() == 4:
x_i = x_i.squeeze(1)
waveform = global_vocoder(x_i)
waveform = waveform[0].cpu().float().detach().numpy()
all_waveforms.append(waveform)
# Concatenate all waveforms
final_waveform = np.concatenate(all_waveforms)
# Trim to exact duration
sample_rate = 16000
final_waveform = final_waveform[:int(duration * sample_rate)]
progress(0.9, desc="Saving audio file")
# Create 'generations' folder
os.makedirs(GENERATIONS_DIR, exist_ok=True)
# Generate filename
prompt_part = re.sub(r'[^\w\s-]', '', prompt)[:10].strip().replace(' ', '_')
model_name = os.path.splitext(os.path.basename(global_model.model_path))[0]
model_suffix = '_mf_b' if model_name == 'musicflow_b' else f'_{model_name}'
base_filename = f"{prompt_part}_{seed}{model_suffix}"
output_path = os.path.join(GENERATIONS_DIR, f"{base_filename}.wav")
# Check if file exists and add numerical suffix if needed
counter = 1
while os.path.exists(output_path):
output_path = os.path.join(GENERATIONS_DIR, f"{base_filename}_{counter}.wav")
counter += 1
wavfile.write(output_path, sample_rate, final_waveform)
progress(1.0, desc="Audio generation complete")
return f"Generated with seed: {seed}", output_path
# Load base resources at startup
load_resources()
# Get list of .pt files in the models directory
model_files = glob.glob(os.path.join(MODELS_DIR, "*.pt"))
model_choices = [os.path.basename(f) for f in model_files]
# Ensure 'musicflow_b.pt' is the default choice if it exists
default_model = 'musicflow_b.pt'
if default_model in model_choices:
model_choices.remove(default_model)
model_choices.insert(0, default_model)
# Set up dark grey theme
theme = gr.themes.Monochrome(
primary_hue="gray",
secondary_hue="gray",
neutral_hue="gray",
radius_size=gr.themes.sizes.radius_sm,
)
# Gradio Interface
with gr.Blocks(theme=theme) as iface:
gr.Markdown(
"""
<div style="text-align: center;">
<h1>FluxMusic Generator</h1>
<p>Generate music based on text prompts using FluxMusic model.</p>
</div>
""")
with gr.Row():
model_dropdown = gr.Dropdown(choices=model_choices, label="Select Model", value=default_model if default_model in model_choices else model_choices[0])
with gr.Row():
prompt = gr.Textbox(label="Prompt")
seed = gr.Number(label="Seed", value=0)
with gr.Row():
cfg_scale = gr.Slider(minimum=1, maximum=40, step=0.1, label="CFG Scale", value=20)
steps = gr.Slider(minimum=10, maximum=200, step=1, label="Steps", value=100)
duration = gr.Number(label="Duration (seconds)", value=10, minimum=10, maximum=300, step=1)
generate_button = gr.Button("Generate Music")
output_status = gr.Textbox(label="Generation Status")
output_audio = gr.Audio(type="filepath")
def on_model_change(model_name):
load_model(model_name)
model_dropdown.change(on_model_change, inputs=[model_dropdown])
generate_button.click(generate_music, inputs=[prompt, seed, cfg_scale, steps, duration], outputs=[output_status, output_audio])
# Load default model on startup
default_model_path = os.path.join(MODELS_DIR, default_model)
if os.path.exists(default_model_path):
iface.load(lambda: load_model(default_model), inputs=None, outputs=None)
# Launch the interface
iface.launch()