File size: 8,912 Bytes
afe1a07
 
 
 
 
 
 
b300542
afe1a07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b300542
 
357478d
afe1a07
 
b300542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afe1a07
 
 
 
 
 
 
 
b300542
afe1a07
b300542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
923a82b
 
 
 
afe1a07
 
b300542
923a82b
 
afe1a07
b300542
923a82b
 
4f4644c
b300542
923a82b
 
b300542
923a82b
b300542
923a82b
 
 
b300542
afe1a07
923a82b
 
b300542
afe1a07
923a82b
 
 
afe1a07
b300542
 
 
afe1a07
b300542
923a82b
b300542
 
923a82b
b300542
 
923a82b
b300542
 
 
 
923a82b
b300542
923a82b
b300542
 
923a82b
b300542
 
923a82b
b300542
 
 
 
 
 
 
923a82b
b300542
 
923a82b
b300542
 
 
 
 
923a82b
b300542
923a82b
b300542
 
923a82b
b300542
 
 
923a82b
b300542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
923a82b
b300542
923a82b
b300542
 
afe1a07
 
 
 
b300542
 
 
 
 
 
 
 
 
 
afe1a07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b300542
 
 
 
 
 
afe1a07
b300542
 
 
 
afe1a07
 
771145b
afe1a07
 
b300542
 
771145b
b300542
 
771145b
b300542
 
 
 
afe1a07
357478d
20d68fc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
import torch
import gradio as gr
from einops import rearrange, repeat
from diffusers import AutoencoderKL
from transformers import SpeechT5HifiGan
from scipy.io import wavfile
import glob
import random
import numpy as np
import re

# Import necessary functions and classes
from utils import load_t5, load_clap
from train import RF
from constants import build_model

# Global variables to store loaded models and resources
global_model = None
global_t5 = None
global_clap = None
global_vae = None
global_vocoder = None
global_diffusion = None

# Set the models directory
MODELS_DIR = "/content/models"
GENERATIONS_DIR = "/content/generations"

def prepare(t5, clip, img, prompt):
    bs, c, h, w = img.shape
    if bs == 1 and not isinstance(prompt, str):
        bs = len(prompt)

    img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
    if img.shape[0] == 1 and bs > 1:
        img = repeat(img, "1 ... -> bs ...", bs=bs)

    img_ids = torch.zeros(h // 2, w // 2, 3)
    img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
    img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
    img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)

    if isinstance(prompt, str):
        prompt = [prompt]
    
    # Generate text embeddings
    txt = t5(prompt)
    
    if txt.shape[0] == 1 and bs > 1:
        txt = repeat(txt, "1 ... -> bs ...", bs=bs)
    txt_ids = torch.zeros(bs, txt.shape[1], 3)

    vec = clip(prompt)
    if vec.shape[0] == 1 and bs > 1:
        vec = repeat(vec, "1 ... -> bs ...", bs=bs)

    return img, {
        "img_ids": img_ids.to(img.device),
        "txt": txt.to(img.device),
        "txt_ids": txt_ids.to(img.device),
        "y": vec.to(img.device),
    }

def unload_current_model():
    global global_model
    if global_model is not None:
        del global_model
        torch.cuda.empty_cache()
        global_model = None

def load_model(model_name):
    global global_model
    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    unload_current_model()
    
    # Determine model size from filename
    if 'musicflow_b' in model_name:
        model_size = "base"
    elif 'musicflow_g' in model_name:
        model_size = "giant"
    elif 'musicflow_l' in model_name:
        model_size = "large"
    elif 'musicflow_s' in model_name:
        model_size = "small"
    else:
        model_size = "base"  # Default to base if unrecognized
    
    print(f"Loading {model_size} model: {model_name}")
    
    model_path = os.path.join(MODELS_DIR, model_name)
    global_model = build_model(model_size).to(device)
    state_dict = torch.load(model_path, map_location=lambda storage, loc: storage, weights_only=True)
    global_model.load_state_dict(state_dict['ema'])
    global_model.eval()
    global_model.model_path = model_path

def load_resources():
    global global_t5, global_clap, global_vae, global_vocoder, global_diffusion
    
    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    print("Loading T5 and CLAP models...")
    global_t5 = load_t5(device, max_length=256)
    global_clap = load_clap(device, max_length=256)
    
    print("Loading VAE and vocoder...")
    global_vae = AutoencoderKL.from_pretrained('cvssp/audioldm2', subfolder="vae").to(device)
    global_vocoder = SpeechT5HifiGan.from_pretrained('cvssp/audioldm2', subfolder="vocoder").to(device)
    
    print("Initializing diffusion...")
    global_diffusion = RF()
    
    print("Base resources loaded successfully!")

def generate_music(prompt, seed, cfg_scale, steps, duration, progress=gr.Progress()):
    global global_model, global_t5, global_clap, global_vae, global_vocoder, global_diffusion
    
    if global_model is None:
        return "Please select a model first.", None
    
    if seed == 0:
        seed = random.randint(1, 1000000)
    print(f"Using seed: {seed}")
    
    device = "cuda" if torch.cuda.is_available() else "cpu"
    torch.manual_seed(seed)
    torch.set_grad_enabled(False)

    # Calculate the number of segments needed for the desired duration
    segment_duration = 10  # Each segment is 10 seconds
    num_segments = int(np.ceil(duration / segment_duration))

    all_waveforms = []

    for i in range(num_segments):
        progress(i / num_segments, desc=f"Generating segment {i+1}/{num_segments}")

        # Use the same seed for all segments
        torch.manual_seed(seed + i)  # Add i to slightly vary each segment while maintaining consistency

        latent_size = (256, 16)
        conds_txt = [prompt]
        unconds_txt = ["low quality, gentle"]
        L = len(conds_txt)

        init_noise = torch.randn(L, 8, latent_size[0], latent_size[1]).to(device)

        img, conds = prepare(global_t5, global_clap, init_noise, conds_txt)
        _, unconds = prepare(global_t5, global_clap, init_noise, unconds_txt)

        with torch.autocast(device_type='cuda'):
            images = global_diffusion.sample_with_xps(global_model, img, conds=conds, null_cond=unconds, sample_steps=steps, cfg=cfg_scale)

        images = rearrange(
            images[-1],
            "b (h w) (c ph pw) -> b c (h ph) (w pw)",
            h=128,
            w=8,
            ph=2,
            pw=2,)

        latents = 1 / global_vae.config.scaling_factor * images
        mel_spectrogram = global_vae.decode(latents).sample

        x_i = mel_spectrogram[0]
        if x_i.dim() == 4:
            x_i = x_i.squeeze(1)
        waveform = global_vocoder(x_i)
        waveform = waveform[0].cpu().float().detach().numpy()

        all_waveforms.append(waveform)

    # Concatenate all waveforms
    final_waveform = np.concatenate(all_waveforms)

    # Trim to exact duration
    sample_rate = 16000
    final_waveform = final_waveform[:int(duration * sample_rate)]

    progress(0.9, desc="Saving audio file")
    
    # Create 'generations' folder
    os.makedirs(GENERATIONS_DIR, exist_ok=True)

    # Generate filename
    prompt_part = re.sub(r'[^\w\s-]', '', prompt)[:10].strip().replace(' ', '_')
    model_name = os.path.splitext(os.path.basename(global_model.model_path))[0]
    model_suffix = '_mf_b' if model_name == 'musicflow_b' else f'_{model_name}'
    base_filename = f"{prompt_part}_{seed}{model_suffix}"
    output_path = os.path.join(GENERATIONS_DIR, f"{base_filename}.wav")
    
    # Check if file exists and add numerical suffix if needed
    counter = 1
    while os.path.exists(output_path):
        output_path = os.path.join(GENERATIONS_DIR, f"{base_filename}_{counter}.wav")
        counter += 1

    wavfile.write(output_path, sample_rate, final_waveform)

    progress(1.0, desc="Audio generation complete")
    return f"Generated with seed: {seed}", output_path

# Load base resources at startup
load_resources()

# Get list of .pt files in the models directory
model_files = glob.glob(os.path.join(MODELS_DIR, "*.pt"))
model_choices = [os.path.basename(f) for f in model_files]

# Ensure 'musicflow_b.pt' is the default choice if it exists
default_model = 'musicflow_b.pt'
if default_model in model_choices:
    model_choices.remove(default_model)
    model_choices.insert(0, default_model)

# Set up dark grey theme
theme = gr.themes.Monochrome(
    primary_hue="gray",
    secondary_hue="gray",
    neutral_hue="gray",
    radius_size=gr.themes.sizes.radius_sm,
)

# Gradio Interface
with gr.Blocks(theme=theme) as iface:
    gr.Markdown(
        """
        <div style="text-align: center;">
            <h1>FluxMusic Generator</h1>
            <p>Generate music based on text prompts using FluxMusic model.</p>
        </div>
        """)
    
    with gr.Row():
        model_dropdown = gr.Dropdown(choices=model_choices, label="Select Model", value=default_model if default_model in model_choices else model_choices[0])
    
    with gr.Row():
        prompt = gr.Textbox(label="Prompt")
        seed = gr.Number(label="Seed", value=0)
    
    with gr.Row():
        cfg_scale = gr.Slider(minimum=1, maximum=40, step=0.1, label="CFG Scale", value=20)
        steps = gr.Slider(minimum=10, maximum=200, step=1, label="Steps", value=100)
        duration = gr.Number(label="Duration (seconds)", value=10, minimum=10, maximum=300, step=1)
    
    generate_button = gr.Button("Generate Music")
    output_status = gr.Textbox(label="Generation Status")
    output_audio = gr.Audio(type="filepath")

    def on_model_change(model_name):
        load_model(model_name)

    model_dropdown.change(on_model_change, inputs=[model_dropdown])
    generate_button.click(generate_music, inputs=[prompt, seed, cfg_scale, steps, duration], outputs=[output_status, output_audio])

    # Load default model on startup
    default_model_path = os.path.join(MODELS_DIR, default_model)
    if os.path.exists(default_model_path):
        iface.load(lambda: load_model(default_model), inputs=None, outputs=None)

# Launch the interface
iface.launch()