Spaces:
Runtime error
Runtime error
File size: 1,853 Bytes
9424877 8b4c535 9424877 8b4c535 9424877 8b4c535 9424877 00b858c 27b3a71 9424877 8b4c535 9424877 00b858c 9424877 8b4c535 9424877 8b4c535 9424877 8b4c535 9424877 8b4c535 d5c8e5b 8b4c535 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import gradio as gr
from gradio import components as gc
import cv2
import requests
import os
from ultralyticsplus import YOLO, render_result
# Model Heading and Description
model_heading = "StockMarket: Trends Recognition for Trading Success"
description = "... (rest of the description) ..."
image_path = [['test/1.jpg', 'foduucom/stockmarket-future-prediction', 640, 0.25, 0.45], ...]
# Load YOLO model
model = YOLO("foduucom/stockmarket-future-prediction")
def yolov8_img_inference(
image: gc.Image = None,
model_path: str = "foduucom/stockmarket-future-prediction",
image_size: gc.Slider = 640,
conf_threshold: gc.Slider = 0.25,
iou_threshold: gc.Slider = 0.45
):
model = YOLO(model_path)
model.overrides['conf'] = conf_threshold
model.overrides['iou'] = iou_threshold
model.overrides['agnostic_nms'] = False
model.overrides['max_det'] = 1000
results = model.predict(image)
render = render_result(model=model, image=image, result=results[0])
return render
inputs_image = [
gc.Image(type="filepath", label="Input Image"),
gc.Dropdown(["foduucom/stockmarket-future-prediction"], default="foduucom/stockmarket-future-prediction", label="Model"),
gc.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
gc.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
gc.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]
outputs_image = gc.Image(type="filepath", label="Output Image")
interface_image = gr.Interface(
fn=yolov8_img_inference,
inputs=inputs_image,
outputs=outputs_image,
title=model_heading,
description=description,
examples=image_path,
cache_examples=False,
theme='huggingface'
)
interface_image.queue()
interface_image.launch(debug=True)
|