File size: 3,056 Bytes
9424877
 
 
 
 
 
 
 
 
 
edbfa99
 
 
 
 
 
 
9424877
5f094b3
9424877
 
b28d162
27b3a71
9424877
 
 
13fd314
 
 
 
8241fcd
9424877
6a59816
9424877
13fd314
9424877
 
3989dd0
9424877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd236be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

import gradio as gr
import cv2
import requests
import os

from ultralyticsplus import YOLO, render_result

# Model Heading and Description
model_heading = "StockMarket: Trends Recognition for Trading Success"
description = """ 🌟 Elevate Your Trading Odyssey with Trend Predictions! 🌟
Dive deep into the enigma of market trends with the precision of a seasoned detective. πŸ•΅οΈβ€β™‚οΈ With Foduu AI's unparalleled insights, transition seamlessly from bearish 'Downs' to bullish 'Ups'. πŸ“‰πŸ“ˆ
Consider us your trading compass, guiding you through the financial wilderness like a modern-day Gandalf. πŸ§™β€β™‚οΈ Whether you're a seasoned trader or just embarking on your journey, we're here to illuminate your path. πŸ’‘
Trading with us? It's like possessing the secret recipe to investment success. πŸ²πŸ’°
Intrigued? Dive into the world of trading alchemy! 🌌
πŸ’Œ Reach Out: [email protected]
πŸ‘ Give us a thumbs up and embark on an unparalleled trading escapade! No, you won't gain superpowers, but you'll be one step closer to mastering the markets! πŸš€πŸŒπŸ“Š!"""

image_path= [['test/1.jpg', 'foduucom/stockmarket-future-prediction', 640, 0.25, 0.45], ['test/2.jpg', 'foduucom/stockmarket-future-prediction', 640, 0.25, 0.45],['test/3.jpg', 'foduucom/stockmarket-future-prediction', 640, 0.25, 0.45]]

# Load YOLO model
model = YOLO("foduucom/stockmarket-future-prediction")


#############################################################Image Inference############################################################
def yolov8_img_inference(
    image: gr.inputs.Image = None,
    model_path: gr.inputs.Dropdown = None,
    image_size: gr.inputs.Slider = 640,
    conf_threshold: gr.inputs.Slider = 0.25,
    iou_threshold: gr.inputs.Slider = 0.45
):
    model = YOLO(model_path)
    model.overrides['conf'] = conf_threshold
    model.overrides['iou']= iou_threshold
    model.overrides['agnostic_nms'] = False  # NMS class-agnostic
    model.overrides['max_det'] = 1000 
    #image = read_image(image)
    results = model.predict(image)
    render = render_result(model=model, image=image, result=results[0])
    
    return render

    
inputs_image = [
    gr.inputs.Image(type="filepath", label="Input Image"),
    gr.inputs.Dropdown(["foduucom/stockmarket-future-prediction"], 
                       default="foduucom/stockmarket-future-prediction", label="Model"),
    gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
    gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
    gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]

outputs_image =gr.outputs.Image(type="filepath", label="Output Image")
interface_image = gr.Interface(
    fn=yolov8_img_inference,
    inputs=inputs_image,
    outputs=outputs_image,
    title=model_heading,
    description=description,
    examples=image_path,
    cache_examples=False,
    theme='huggingface'
)

interface_image.launch(debug=True, enable_queue=True)