Spaces:
Sleeping
Sleeping
File size: 5,233 Bytes
389edca 8db6502 389edca 8db6502 f5b2a21 389edca 8db6502 a1798f7 8db6502 f5b2a21 8db6502 389edca 8db6502 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import gradio as gr
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
# Model configuration
REPO_ID = "forestav/medical_model"
MODEL_FILE = "unsloth.F16.gguf"
def download_model():
"""
Download the model from Hugging Face Hub if not already present
"""
try:
model_path = hf_hub_download(
repo_id=REPO_ID,
filename=MODEL_FILE,
)
return model_path
except Exception as e:
print(f"Error downloading model: {e}")
return None
def load_model(model_path):
"""
Load the GGUF model using llama_cpp
"""
try:
model = Llama(
model_path=model_path,
n_ctx=4096, # Adjust context window as needed
n_batch=512, # Batch size for prompt processing
verbose=False # Set to True for detailed loading info
)
return model
except Exception as e:
print(f"Error loading model: {e}")
return None
def generate_medical_response(model, prompt, max_tokens=300):
"""
Generate a medical advice response using the loaded model
"""
try:
# Generate response
output = model.create_chat_completion(
messages=[
{"role": "system", "content": "You are a professional medical assistant. If you don't have an answer, say I don't know."},
{"role": "user", "content": prompt}
],
max_tokens=max_tokens,
temperature=1.5,
min_p=0.1,
)
# Extract and return the response text
return output['choices'][0]['message']['content']
except Exception as e:
return f"An error occurred while generating a response: {e}"
def medical_chatbot_interface(message, history):
"""
Gradio interface function for the medical chatbot
"""
# Ensure model is loaded
if not hasattr(medical_chatbot_interface, 'model'):
model_path = download_model()
if not model_path:
return "Failed to download model"
medical_chatbot_interface.model = load_model(model_path)
if not medical_chatbot_interface.model:
return "Failed to load model"
# Generate response
response = generate_medical_response(medical_chatbot_interface.model, message)
return response
# Create Gradio interface with modern, professional medical-themed UI
def create_medical_chatbot_ui():
# Modern, professional medical-themed CSS
modern_medical_css = """
:root {
--primary-color: #2c7da0;
--secondary-color: #468faf;
--background-color: #f8fbfd;
--text-color: #333;
--card-background: #ffffff;
}
body {
font-family: 'Inter', 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
background-color: var(--background-color);
color: var(--text-color);
line-height: 1.6;
}
.gradio-container {
background-color: var(--background-color);
max-width: 800px;
margin: 0 auto;
padding: 20px;
border-radius: 12px;
box-shadow: 0 10px 25px rgba(0, 0, 0, 0.05);
}
.chatbot-container {
background-color: var(--card-background);
border-radius: 12px;
border: 1px solid rgba(44, 125, 160, 0.1);
overflow: hidden;
}
.message-input {
border: 2px solid var(--primary-color);
border-radius: 8px;
padding: 12px;
font-size: 16px;
transition: all 0.3s ease;
}
.message-input:focus {
outline: none;
border-color: var(--secondary-color);
box-shadow: 0 0 0 3px rgba(44, 125, 160, 0.1);
}
.submit-button {
background-color: var(--primary-color);
color: white;
border: none;
border-radius: 8px;
padding: 12px 20px;
font-weight: 600;
transition: all 0.3s ease;
}
.submit-button:hover {
background-color: var(--secondary-color);
}
/* Chat message styling */
.message {
max-width: 80%;
margin: 10px 0;
padding: 12px 16px;
border-radius: 12px;
line-height: 1.5;
}
.user-message {
background-color: var(--primary-color);
color: white;
align-self: flex-end;
margin-left: auto;
}
.bot-message {
background-color: #f0f4f8;
color: var(--text-color);
align-self: flex-start;
}
"""
# Create Gradio interface with modern design
demo = gr.ChatInterface(
fn=medical_chatbot_interface,
title="🩺 MediAssist: AI Health Companion",
description="Get professional medical insights and guidance. Always consult a healthcare professional for personalized medical advice. 🌡️",
theme='soft',
css=modern_medical_css
)
return demo
# Launch the app
if __name__ == "__main__":
# Create and launch the Gradio app
medical_chatbot = create_medical_chatbot_ui()
medical_chatbot.launch(
server_name="0.0.0.0", # Make accessible outside the local machine
server_port=7860,
share=False # Generate a public link
) |