File size: 45,653 Bytes
5d85dd3 989593a 5d85dd3 c269360 5d85dd3 91072fd 5d85dd3 2ee8bb5 5d85dd3 2ee8bb5 5d85dd3 989593a 5d85dd3 989593a 5d85dd3 2ee8bb5 5d85dd3 2ee8bb5 5d85dd3 2ee8bb5 5d85dd3 2ee8bb5 5d85dd3 2ee8bb5 5d85dd3 2ee8bb5 5d85dd3 2ee8bb5 5d85dd3 2ee8bb5 0b4b4f5 4cf379e 5d85dd3 989593a 5d85dd3 da463b3 5d85dd3 2ee8bb5 5d85dd3 2ee8bb5 5d85dd3 2536959 5d85dd3 2536959 5d85dd3 2237cd0 5d85dd3 737741b 5d85dd3 2ee8bb5 4cf379e f2c97e8 4cf379e f2c97e8 4cf379e 2ee8bb5 4cf379e f2eaacb 4cf379e 5d85dd3 4cf379e 5d85dd3 9197baf 5d85dd3 2ee8bb5 5d85dd3 2ee8bb5 5d85dd3 2ee8bb5 4cf379e 2d20c9f 4cf379e 2ee8bb5 4cf379e 5d85dd3 2ee8bb5 7a9acb3 5d85dd3 91072fd 395d233 5d85dd3 395d233 5d85dd3 79610f5 5a87210 5d85dd3 e982d47 aa975d0 0b4b4f5 aa975d0 4411e98 5d85dd3 4cf379e 1464def 29290cf 737741b 29290cf 737741b 1464def 737741b 1464def 5d85dd3 4dfaa8f 5d85dd3 9197baf 5d85dd3 9197baf 5d85dd3 827e23a 5d85dd3 827e23a 5d85dd3 2536959 5d85dd3 b3fbddc 5d85dd3 b3fbddc 3f0d02c b3fbddc 3f0d02c b3fbddc 4dfaa8f b3fbddc 3f0d02c b3fbddc 3f0d02c b3fbddc 5d85dd3 895bea6 5d85dd3 4e37c70 4caec38 de2190d 4e37c70 de2190d 4d4ff7e de2190d 4e37c70 2ee8bb5 5d85dd3 de2190d 4d4ff7e de2190d 5d85dd3 895bea6 de2190d 5d85dd3 de2190d 4caec38 4e37c70 989593a 5d85dd3 4caec38 989593a 5d85dd3 989593a 5d85dd3 8a51390 5d85dd3 0890acc 5d85dd3 0890acc 5d85dd3 8a51390 5d85dd3 2ee8bb5 9197baf 2536959 5d85dd3 2ee8bb5 5d85dd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 |
import gradio as gr
import cv2
from PIL import Image
import numpy as np
import os
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.transforms import Compose
import tempfile
from functools import partial
import spaces
from zipfile import ZipFile
from vincenty import vincenty
import json
from collections import Counter
import mediapy
from pymatting import cutout
#from depth_anything.dpt import DepthAnything
#from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from huggingface_hub import hf_hub_download
from depth_anything_v2.dpt import DepthAnythingV2
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder2name = {
'vits': 'Small',
'vitb': 'Base',
'vitl': 'Large',
'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
}
blurin = "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
edge = []
gradient = None
params = { "fnum":0 }
pcolors = []
frame_selected = 0
frames = []
backups = []
depths = []
masks = []
locations = []
mesh = []
mesh_n = []
scene = None
def zip_files(files_in, files_out):
with ZipFile("depth_result.zip", "w") as zipObj:
for idx, file in enumerate(files_in):
zipObj.write(file, file.split("/")[-1])
for idx, file in enumerate(files_out):
zipObj.write(file, file.split("/")[-1])
return "depth_result.zip"
def create_video(frames, fps, type):
print("building video result")
imgs = []
for j, img in enumerate(frames):
imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB))
mediapy.write_video(type + "_result.mp4", imgs, fps=fps)
return type + "_result.mp4"
@torch.no_grad()
#@spaces.GPU
def predict_depth(image, model):
return model.infer_image(image)
#def predict_depth(model, image):
# return model(image)["depth"]
def make_video(video_path, outdir='./vis_video_depth', encoder='vits', blur_data=blurin, o=1, b=32):
if encoder not in ["vitl","vitb","vits","vitg"]:
encoder = "vits"
model_name = encoder2name[encoder]
model = DepthAnythingV2(**model_configs[encoder])
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
state_dict = torch.load(filepath, map_location="cpu")
model.load_state_dict(state_dict)
model = model.to(DEVICE).eval()
#mapper = {"vits":"small","vitb":"base","vitl":"large"}
# DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
# Define path for temporary processed frames
#temp_frame_dir = tempfile.mkdtemp()
#margin_width = 50
#to_tensor_transform = transforms.ToTensor()
#DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(encoder)).to(DEVICE).eval()
#depth_anything = pipeline(task = "depth-estimation", model=f"nielsr/depth-anything-{mapper[encoder]}")
# total_params = sum(param.numel() for param in depth_anything.parameters())
# print('Total parameters: {:.2f}M'.format(total_params / 1e6))
#transform = Compose([
# Resize(
# width=518,
# height=518,
# resize_target=False,
# keep_aspect_ratio=True,
# ensure_multiple_of=14,
# resize_method='lower_bound',
# image_interpolation_method=cv2.INTER_CUBIC,
# ),
# NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# PrepareForNet(),
#])
if os.path.isfile(video_path):
if video_path.endswith('txt'):
with open(video_path, 'r') as f:
lines = f.read().splitlines()
else:
filenames = [video_path]
else:
filenames = os.listdir(video_path)
filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
filenames.sort()
# os.makedirs(outdir, exist_ok=True)
global masks
for k, filename in enumerate(filenames):
file_size = os.path.getsize(filename)/1024/1024
if file_size > 128.0:
print(f'File size of {filename} larger than 128Mb, sorry!')
return filename
print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
raw_video = cv2.VideoCapture(filename)
frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
if frame_rate < 1:
frame_rate = 1
cframes = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
print(f'frames: {cframes}, fps: {frame_rate}')
# output_width = frame_width * 2 + margin_width
#filename = os.path.basename(filename)
# output_path = os.path.join(outdir, filename[:filename.rfind('.')] + '_video_depth.mp4')
#with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
# output_path = tmpfile.name
#out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"avc1"), frame_rate, (output_width, frame_height))
#fourcc = cv2.VideoWriter_fourcc(*'mp4v')
#out = cv2.VideoWriter(output_path, fourcc, frame_rate, (output_width, frame_height))
count = 0
n = 0
depth_frames = []
orig_frames = []
backup_frames = []
thumbnail_old = []
while raw_video.isOpened():
ret, raw_frame = raw_video.read()
if not ret:
break
else:
print(count)
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0
frame_pil = Image.fromarray((frame * 255).astype(np.uint8))
#frame = transform({'image': frame})['image']
#frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE)
raw_frame_bg = cv2.medianBlur(raw_frame, 255)
#
depth = predict_depth(raw_frame[:, :, ::-1], model)
depth_gray = ((depth - depth.min()) / (depth.max() - depth.min()) * 255.0).astype(np.uint8)
#
#depth = to_tensor_transform(predict_depth(depth_anything, frame_pil))
#depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0]
#depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
#depth = depth.cpu().numpy().astype(np.uint8)
#depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_BONE)
#depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGBA2GRAY)
# Remove white border around map:
# define lower and upper limits of white
#white_lo = np.array([250,250,250])
#white_hi = np.array([255,255,255])
# mask image to only select white
mask = cv2.inRange(depth_gray[0:int(depth_gray.shape[0]/8*7)-1, 0:depth_gray.shape[1]], 250, 255)
# change image to black where we found white
depth_gray[0:int(depth_gray.shape[0]/8*7)-1, 0:depth_gray.shape[1]][mask>0] = 0
mask = cv2.inRange(depth_gray[int(depth_gray.shape[0]/8*7):depth_gray.shape[0], 0:depth_gray.shape[1]], 192, 255)
depth_gray[int(depth_gray.shape[0]/8*7):depth_gray.shape[0], 0:depth_gray.shape[1]][mask>0] = 192
depth_color = cv2.cvtColor(depth_gray, cv2.COLOR_GRAY2BGR)
# split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
# combined_frame = cv2.hconcat([raw_frame, split_region, depth_color])
# out.write(combined_frame)
# frame_path = os.path.join(temp_frame_dir, f"frame_{count:05d}.png")
# cv2.imwrite(frame_path, combined_frame)
#raw_frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2BGRA)
#raw_frame[:, :, 3] = 255
if cframes < 16:
thumbnail = cv2.cvtColor(cv2.resize(raw_frame, (16,32)), cv2.COLOR_BGR2GRAY).flatten()
if len(thumbnail_old) > 0:
diff = thumbnail - thumbnail_old
#print(diff)
c = Counter(diff)
value, cc = c.most_common()[0]
if value == 0 and cc > int(16*32*0.8):
count += 1
continue
thumbnail_old = thumbnail
blur_frame = blur_image(raw_frame, depth_color, blur_data)
cv2.imwrite(f"f{count}.png", blur_frame)
orig_frames.append(f"f{count}.png")
cv2.imwrite(f"f{count}_.png", blur_frame)
backup_frames.append(f"f{count}_.png")
cv2.imwrite(f"f{count}_dmap.png", depth_color)
depth_frames.append(f"f{count}_dmap.png")
depth_gray = seg_frame(depth_gray, o, b) + 128
print(depth_gray[depth_gray>128]-128)
cv2.imwrite(f"f{count}_mask.png", depth_gray)
masks.append(f"f{count}_mask.png")
depth_gray_trimap = np.zeros(depth_gray.shape[:2], np.uint8)
depth_gray_trimap[depth_gray==128] = 0
depth_gray_trimap[depth_gray==129] = 255
depth_gray_trimap[depth_gray==131] = 127
cv2.imwrite(f"f{count}_trimap.png", depth_gray_trimap)
cutout(
# input image path
f"f{count}.png",
# input trimap path
f"f{count}_trimap.png",
# output cutout path
f"f{count}.png")
count += 1
final_vid = create_video(orig_frames, frame_rate, "orig")
#final_vid = create_video(depth_frames, frame_rate, "depth")
final_zip = zip_files(orig_frames, depth_frames)
raw_video.release()
# out.release()
cv2.destroyAllWindows()
global gradient
global frame_selected
global depths
global frames
global backups
frames = orig_frames
backups = backup_frames
depths = depth_frames
if depth_color.shape[0] == 2048: #height
gradient = cv2.imread('./gradient_large.png').astype(np.uint8)
elif depth_color.shape[0] == 1024:
gradient = cv2.imread('./gradient.png').astype(np.uint8)
else:
gradient = cv2.imread('./gradient_small.png').astype(np.uint8)
return final_vid, final_zip, frames, masks[frame_selected], depths #output_path
def depth_edges_mask(depth):
"""Returns a mask of edges in the depth map.
Args:
depth: 2D numpy array of shape (H, W) with dtype float32.
Returns:
mask: 2D numpy array of shape (H, W) with dtype bool.
"""
# Compute the x and y gradients of the depth map.
depth_dx, depth_dy = np.gradient(depth)
# Compute the gradient magnitude.
depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
# Compute the edge mask.
mask = depth_grad > 0.05
return mask
def pano_depth_to_world_points(depth):
"""
360 depth to world points
given 2D depth is an equirectangular projection of a spherical image
Treat depth as radius
longitude : -pi to pi
latitude : -pi/2 to pi/2
"""
# Convert depth to radius
radius = (255 - depth.flatten())
lon = np.linspace(0, np.pi*2, depth.shape[1])
lat = np.linspace(0, np.pi, depth.shape[0])
lon, lat = np.meshgrid(lon, lat)
lon = lon.flatten()
lat = lat.flatten()
pts3d = [[0,0,0]]
uv = [[0,0]]
nl = [[0,0,0]]
for i in range(0, 1): #(0,2)
for j in range(0, 1): #(0,2)
#rnd_lon = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
#rnd_lat = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
d_lon = lon + i/2 * np.pi*2 / depth.shape[1]
d_lat = lat + j/2 * np.pi / depth.shape[0]
nx = np.cos(d_lon) * np.sin(d_lat)
ny = np.cos(d_lat)
nz = np.sin(d_lon) * np.sin(d_lat)
# Convert to cartesian coordinates
x = radius * nx
y = radius * ny
z = radius * nz
pts = np.stack([x, y, z], axis=1)
uvs = np.stack([lon/np.pi/2, lat/np.pi], axis=1)
nls = np.stack([-nx, -ny, -nz], axis=1)
pts3d = np.concatenate((pts3d, pts), axis=0)
uv = np.concatenate((uv, uvs), axis=0)
nl = np.concatenate((nl, nls), axis=0)
#print(f'i: {i}, j: {j}')
j = j+1
i = i+1
return [pts3d, uv, nl]
def rgb2gray(rgb):
return np.dot(rgb[...,:3], [0.333, 0.333, 0.333])
def get_mesh(image, depth, blur_data, loadall):
global depths
global pcolors
global frame_selected
global mesh
global mesh_n
global scene
if loadall == False:
mesh = []
mesh_n = []
fnum = frame_selected
#print(image[fnum][0])
#print(depth["composite"])
depthc = cv2.imread(depths[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
blur_img = blur_image(cv2.imread(image[fnum][0], cv2.IMREAD_UNCHANGED).astype(np.uint8), depthc, blur_data)
gdepth = cv2.cvtColor(depthc, cv2.COLOR_RGB2GRAY) #rgb2gray(depthc)
print('depth to gray - ok')
points = pano_depth_to_world_points(gdepth)
pts3d = points[0]
uv = points[1]
nl = points[2]
print('radius from depth - ok')
# Create a trimesh mesh from the points
# Each pixel is connected to its 4 neighbors
# colors are the RGB values of the image
uvs = uv.reshape(-1, 2)
#print(uvs)
#verts = pts3d.reshape(-1, 3)
verts = [[0,0,0]]
normals = nl.reshape(-1, 3)
rgba = cv2.cvtColor(blur_img, cv2.COLOR_RGB2RGBA)
colors = rgba.reshape(-1, 4)
clrs = [[128,128,128,0]]
#for i in range(0,1): #(0,4)
#clrs = np.concatenate((clrs, colors), axis=0)
#i = i+1
#verts, clrs
#pcd = o3d.geometry.TriangleMesh.create_tetrahedron()
#pcd.compute_vertex_normals()
#pcd.paint_uniform_color((1.0, 1.0, 1.0))
#mesh.append(pcd)
#print(mesh[len(mesh)-1])
if not str(fnum) in mesh_n:
mesh_n.append(str(fnum))
print('mesh - ok')
# Save as glb
#glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
#o3d.io.write_triangle_mesh(glb_file.name, pcd)
#print('file - ok')
return "./TriangleWithoutIndices.gltf", ",".join(mesh_n)
def blur_image(image, depth, blur_data):
blur_a = blur_data.split()
print(f'blur data {blur_data}')
blur_frame = image.copy()
j = 0
while j < 256:
i = 255 - j
blur_lo = np.array([i,i,i])
blur_hi = np.array([i+1,i+1,i+1])
blur_mask = cv2.inRange(depth, blur_lo, blur_hi)
#print(f'kernel size {int(blur_a[j])}')
blur = cv2.GaussianBlur(image, (int(blur_a[j]), int(blur_a[j])), 0)
blur_frame[blur_mask>0] = blur[blur_mask>0]
j = j + 1
white = cv2.inRange(blur_frame, np.array([255,255,255]), np.array([255,255,255]))
blur_frame[white>0] = (254,254,254)
return blur_frame
def loadfile(f):
return f
def show_json(txt):
data = json.loads(txt)
print(txt)
i=0
while i < len(data[2]):
data[2][i] = data[2][i]["image"]["path"]
data[4][i] = data[4][i]["path"]
i=i+1
return data[0]["video"]["path"], data[1]["path"], data[2], data[3]["background"]["path"], data[4], data[5]
def seg_frame(newmask, b, d):
if newmask.shape[0] == 2048: #height
gd = cv2.imread('./gradient_large.png', cv2.IMREAD_GRAYSCALE).astype(np.uint8)
elif newmask.shape[0] == 1024:
gd = cv2.imread('./gradient.png', cv2.IMREAD_GRAYSCALE).astype(np.uint8)
else:
gd = cv2.imread('./gradient_small.png', cv2.IMREAD_GRAYSCALE).astype(np.uint8)
newmask[np.absolute(newmask.astype(np.int16)-gd.astype(np.int16))<16] = 0
ret,newmask = cv2.threshold(newmask,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
#b = 1
#d = 32
element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
bd = cv2.erode(newmask, element)
element = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * d + 1, 2 * d + 1), (d, d))
bg = cv2.dilate(newmask, element)
bg[bg.shape[0]-64:bg.shape[0],0:bg.shape[1]] = 0
mask = np.zeros(newmask.shape[:2],np.uint8)
# https://docs.opencv.org/4.x/d8/d83/tutorial_py_grabcut.html
# wherever it is marked white (sure foreground), change mask=1
# wherever it is marked black (sure background), change mask=0
mask[bg == 255] = 3
mask[bd == 255] = 1 #2: probable bg, 3: probable fg
return mask
def select_frame(d, evt: gr.SelectData):
global frame_selected
global depths
global masks
global edge
if evt.index != frame_selected:
edge = []
frame_selected = evt.index
return depths[frame_selected], frame_selected
def switch_rows(v):
global frames
global depths
if v == True:
print(depths[0])
return depths
else:
print(frames[0])
return frames
def bincount(a):
a2D = a.reshape(-1,a.shape[-1])
col_range = (256, 256, 256) # generically : a2D.max(0)+1
a1D = np.ravel_multi_index(a2D.T, col_range)
return list(reversed(np.unravel_index(np.bincount(a1D).argmax(), col_range)))
def reset_mask(d):
global frame_selected
global frames
global backups
global masks
global depths
global edge
edge = []
backup = cv2.imread(backups[frame_selected]).astype(np.uint8)
cv2.imwrite(frames[frame_selected], backup)
d["layers"][0][0:d["layers"][0].shape[0], 0:d["layers"][0].shape[1]] = (0,0,0,0)
return gr.ImageEditor(value=d)
def draw_mask(o, b, v, d, evt: gr.EventData):
global frames
global depths
global params
global frame_selected
global masks
global gradient
global edge
points = json.loads(v)
pts = np.array(points, np.int32)
pts = pts.reshape((-1,1,2))
if len(edge) == 0 or params["fnum"] != frame_selected:
if params["fnum"] != frame_selected:
d["background"] = cv2.imread(depths[frame_selected]).astype(np.uint8)
params["fnum"] = frame_selected
bg = cv2.cvtColor(d["background"], cv2.COLOR_RGBA2GRAY)
bg[bg==255] = 0
edge = bg.copy()
else:
bg = edge.copy()
x = points[len(points)-1][0]
y = points[len(points)-1][1]
mask = cv2.imread(masks[frame_selected], cv2.IMREAD_GRAYSCALE).astype(np.uint8)
mask[mask==128] = 0
print(mask[mask>0]-128)
d["layers"][0] = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGBA)
sel = cv2.floodFill(mask, None, (x, y), 1, 2, 2, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv2.FLOODFILL_FIXED_RANGE | cv2.FLOODFILL_MASK_ONLY | 255 << 8)
# 255 << 8 tells to fill with the value 255)
sel = sel[1:sel.shape[0]-1, 1:sel.shape[1]-1]
d["layers"][0][sel==0] = (0,0,0,0)
mask = cv2.cvtColor(d["layers"][0], cv2.COLOR_RGBA2GRAY)
mask[mask==0] = 128
print(mask[mask>128]-128)
mask, bgdModel, fgdModel = cv2.grabCut(cv2.cvtColor(d["background"], cv2.COLOR_RGBA2RGB), mask-128, None,None,None,15, cv2.GC_INIT_WITH_MASK)
mask = np.where((mask==2)|(mask==0),0,1).astype('uint8')
frame = cv2.imread(frames[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
frame[mask>0] = (255,255,255)
cv2.imwrite(frames[frame_selected], frame)
switch_rows(False)
return gr.ImageEditor(value=d)
load_model="""
async(c, o, p, d, n, m)=>{
var intv = setInterval(function(){
if (document.getElementById("iframe3D")===null || typeof document.getElementById("iframe3D")==="undefined") {
try {
if (typeof BABYLON !== "undefined" && BABYLON.Engine && BABYLON.Engine.LastCreatedScene) {
BABYLON.Engine.LastCreatedScene.onAfterRenderObservable.add(function() { //onDataLoadedObservable
var then = new Date().getTime();
var now, delta;
const interval = 1000 / 25;
const tolerance = 0.1;
BABYLON.Engine.LastCreatedScene.getEngine().stopRenderLoop();
BABYLON.Engine.LastCreatedScene.getEngine().runRenderLoop(function () {
now = new Date().getTime();
delta = now - then;
then = now - (delta % interval);
if (delta >= interval - tolerance) {
BABYLON.Engine.LastCreatedScene.render();
}
});
BABYLON.Engine.LastCreatedScene.getEngine().setHardwareScalingLevel(1.0);
BABYLON.Engine.LastCreatedScene.clearColor = new BABYLON.Color4(255,255,255,255);
BABYLON.Engine.LastCreatedScene.ambientColor = new BABYLON.Color4(255,255,255,255);
//BABYLON.Engine.LastCreatedScene.autoClear = false;
//BABYLON.Engine.LastCreatedScene.autoClearDepthAndStencil = false;
/*for (var i=0; i<BABYLON.Engine.LastCreatedScene.getNodes().length; i++) {
if (BABYLON.Engine.LastCreatedScene.getNodes()[i].material) {
BABYLON.Engine.LastCreatedScene.getNodes()[i].material.pointSize = Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value));
}
}*/
BABYLON.Engine.LastCreatedScene.getAnimationRatio();
//BABYLON.Engine.LastCreatedScene.activeCamera.inertia = 0.0;
});
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata = {
pipeline: new BABYLON.DefaultRenderingPipeline("default", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera])
}
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = 1.0;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = 1.0;
BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById("zoom").value;
document.getElementById("model3D").getElementsByTagName("canvas")[0].style.filter = "blur(" + Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value))/2.0*Math.sqrt(2.0) + "px)";
document.getElementById("model3D").getElementsByTagName("canvas")[0].oncontextmenu = function(e){e.preventDefault();}
document.getElementById("model3D").getElementsByTagName("canvas")[0].ondrag = function(e){e.preventDefault();}
if (o.indexOf(""+n) < 0) {
if (o != "") { o += ","; }
o += n;
}
//alert(o);
var o_ = o.split(",");
var q = BABYLON.Engine.LastCreatedScene.meshes;
for(i = 0; i < q.length; i++) {
let mesh = q[i];
mesh.dispose(false, true);
}
var dome = [];
for (var j=0; j<o_.length; j++) {
o_[j] = parseInt(o_[j]);
dome[j] = new BABYLON.PhotoDome("dome"+j, p[o_[j]].image.url,
{
resolution: 16,
size: 512
}, BABYLON.Engine.LastCreatedScene);
var q = BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-2]._children;
for(i = 0; i < q.length; i++) {
let mesh = q[i];
mesh.dispose(false, true);
}
//BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.needDepthPrePass = true;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].scaling.z = -1;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].alphaIndex = o_.length-j;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.diffuseTexture.hasAlpha = true;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.useAlphaFromDiffuseTexture = true;
BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].applyDisplacementMap(m[o_[j]].url, 0, 255, function(m){try{alert(BABYLON.Engine.Version);}catch(e){alert(e);}}, null, null, true, function(e){alert(e);});
}
clearInterval(intv);
}
} catch(e) {alert(e);}
} else if (BABYLON || BABYLON == null) {
try {
BABYLON = null;
if (document.getElementById("model3D").getElementsByTagName("canvas")[0]) {
document.getElementById("model3D").getElementsByTagName("canvas")[0].remove();
}
document.getElementById("iframe3D").src = "index.htm";
document.getElementById("iframe3D").onload = function() {
if (o.indexOf(""+n) < 0) {
if (o != "") { o += ","; }
o += n;
}
alert(o);
var o_ = o.split(",");
document.getElementById("iframe3D").contentDocument.getElementById("coords").value = c;
document.getElementById("iframe3D").contentDocument.getElementById("order").value = o;
document.getElementById("iframe3D").contentDocument.getElementById("bgimage").value = "";
document.getElementById("iframe3D").contentDocument.getElementById("bgdepth").value = "";
for (var j=0; j<o_.length; j++) {
o_[j] = parseInt(o_[j]);
alert(o_[j]);
document.getElementById("iframe3D").contentDocument.getElementById("bgimage").value += p[o_[j]].image.url + ",";
document.getElementById("iframe3D").contentDocument.getElementById("bgdepth").value += m[o_[j]].url + ",";
}
}
toggleDisplay("model");
clearInterval(intv);
} catch(e) {alert(e)}
}
}, 40);
}
"""
js = """
async()=>{
console.log('Hi');
const chart = document.getElementById('chart');
const blur_in = document.getElementById('blur_in').getElementsByTagName('textarea')[0];
var md = false;
var xold = 128;
var yold = 32;
var a = new Array(256);
var l;
for (var i=0; i<256; i++) {
const hr = document.createElement('hr');
hr.style.backgroundColor = 'hsl(0,0%,' + (100-i/256*100) + '%)';
chart.appendChild(hr);
}
function resetLine() {
a.fill(1);
for (var i=0; i<256; i++) {
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = '32px';
}
}
resetLine();
window.resetLine = resetLine;
function pointerDown(x, y) {
md = true;
xold = parseInt(x - chart.getBoundingClientRect().x);
yold = parseInt(y - chart.getBoundingClientRect().y);
chart.title = xold + ',' + yold;
}
window.pointerDown = pointerDown;
function pointerUp() {
md = false;
var evt = document.createEvent('Event');
evt.initEvent('input', true, false);
blur_in.dispatchEvent(evt);
chart.title = '';
}
window.pointerUp = pointerUp;
function lerp(y1, y2, mu) { return y1*(1-mu)+y2*mu; }
function drawLine(x, y) {
x = parseInt(x - chart.getBoundingClientRect().x);
y = parseInt(y - chart.getBoundingClientRect().y);
if (md === true && y >= 0 && y < 64 && x >= 0 && x < 256) {
if (y < 32) {
a[x] = Math.abs(32-y)*2 + 1;
chart.childNodes[x].style.height = a[x] + 'px';
chart.childNodes[x].style.marginTop = y + 'px';
for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));
if (l < 32) {
a[i] = Math.abs(32-l)*2 + 1;
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = l + 'px';
} else if (l < 64) {
a[i] = Math.abs(l-32)*2 + 1;
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = (64-l) + 'px';
}
}
} else if (y < 64) {
a[x] = Math.abs(y-32)*2 + 1;
chart.childNodes[x].style.height = a[x] + 'px';
chart.childNodes[x].style.marginTop = (64-y) + 'px';
for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));
if (l < 32) {
a[i] = Math.abs(32-l)*2 + 1;
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = l + 'px';
} else if (l < 64) {
a[i] = Math.abs(l-32)*2 + 1;
chart.childNodes[i].style.height = a[i] + 'px';
chart.childNodes[i].style.marginTop = (64-l) + 'px';
}
}
}
blur_in.value = a.join(' ');
xold = x;
yold = y;
chart.title = xold + ',' + yold;
}
}
window.drawLine = drawLine;
var intv_ = setInterval(function(){
if (document.getElementById("image_edit") && document.getElementById("image_edit").getElementsByTagName("canvas")) {
document.getElementById("image_edit").getElementsByTagName("canvas")[0].oncontextmenu = function(e){e.preventDefault();}
document.getElementById("image_edit").getElementsByTagName("canvas")[0].ondrag = function(e){e.preventDefault();}
document.getElementById("image_edit").getElementsByTagName("canvas")[0].onclick = function(e) {
var x = parseInt((e.clientX-e.target.getBoundingClientRect().x)*e.target.width/e.target.getBoundingClientRect().width);
var y = parseInt((e.clientY-e.target.getBoundingClientRect().y)*e.target.height/e.target.getBoundingClientRect().height);
var p = document.getElementById("mouse").getElementsByTagName("textarea")[0].value.slice(1, -1);
if (p != "") { p += ", "; }
p += "[" + x + ", " + y + "]";
document.getElementById("mouse").getElementsByTagName("textarea")[0].value = "[" + p + "]";
var evt = document.createEvent("Event");
evt.initEvent("input", true, false);
document.getElementById("mouse").getElementsByTagName("textarea")[0].dispatchEvent(evt);
}
document.getElementById("image_edit").getElementsByTagName("canvas")[0].onfocus = function(e) {
document.getElementById("mouse").getElementsByTagName("textarea")[0].value = "[]";
}
document.getElementById("image_edit").getElementsByTagName("canvas")[0].onblur = function(e) {
document.getElementById("mouse").getElementsByTagName("textarea")[0].value = "[]";
}
clearInterval(intv_);
}
}, 40);
}
"""
css = """
#img-display-container {
max-height: 100vh;
}
#img-display-input {
max-height: 80vh;
}
#img-display-output {
max-height: 80vh;
}
"""
title = "# Depth Anything V2 Video"
description = """**Depth Anything V2** on full video files, intended for Google Street View panorama slideshows.
Please refer to the [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), and [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""
#transform = Compose([
# Resize(
# width=518,
# height=518,
# resize_target=False,
# keep_aspect_ratio=True,
# ensure_multiple_of=14,
# resize_method='lower_bound',
# image_interpolation_method=cv2.INTER_CUBIC,
# ),
# NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# PrepareForNet(),
#])
# @torch.no_grad()
# def predict_depth(model, image):
# return model(image)
with gr.Blocks(css=css, js=js) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### Video Depth Prediction demo")
with gr.Row():
with gr.Column():
with gr.Group():
input_json = gr.Textbox(elem_id="json_in", value="{}", label="JSON", interactive=False)
input_url = gr.Textbox(elem_id="url_in", value="./examples/streetview.mp4", label="URL")
input_video = gr.Video(label="Input Video", format="mp4")
input_url.input(fn=loadfile, inputs=[input_url], outputs=[input_video])
submit = gr.Button("Submit")
with gr.Group():
output_frame = gr.Gallery(label="Frames", preview=True, columns=8192, interactive=False)
output_switch = gr.Checkbox(label="Show depths")
output_switch.input(fn=switch_rows, inputs=[output_switch], outputs=[output_frame])
selected = gr.Number(label="Selected frame", visible=False, elem_id="fnum", value=0, minimum=0, maximum=256, interactive=False)
with gr.Accordion(label="Depths", open=False):
output_depth = gr.Files(label="Depth files", interactive=False)
with gr.Group():
output_mask = gr.ImageEditor(layers=False, sources=('clipboard'), show_download_button=True, type="numpy", interactive=True, transforms=(None,), eraser=gr.Eraser(), brush=gr.Brush(default_size=0, colors=['black', '#505050', '#a0a0a0', 'white']), elem_id="image_edit")
with gr.Accordion(label="Border", open=False):
boffset = gr.Slider(label="Offset", value=1, maximum=256, minimum=0, step=1)
bsize = gr.Slider(label="Size", value=32, maximum=256, minimum=0, step=1)
mouse = gr.Textbox(label="Mouse x,y", elem_id="mouse", value="""[]""", interactive=False)
reset = gr.Button("Reset", size='sm')
mouse.input(fn=draw_mask, show_progress="minimal", inputs=[boffset, bsize, mouse, output_mask], outputs=[output_mask])
reset.click(fn=reset_mask, inputs=[output_mask], outputs=[output_mask])
with gr.Column():
model_type = gr.Dropdown([("small", "vits"), ("base", "vitb"), ("large", "vitl"), ("giant", "vitg")], type="value", value="vits", label='Model Type')
processed_video = gr.Video(label="Output Video", format="mp4", interactive=False)
processed_zip = gr.File(label="Output Archive", interactive=False)
result = gr.Model3D(label="3D Mesh", clear_color=[0.5, 0.5, 0.5, 0.0], camera_position=[0, 90, 0], zoom_speed=2.0, pan_speed=2.0, interactive=True, elem_id="model3D")
with gr.Tab("Blur"):
chart_c = gr.HTML(elem_id="chart_c", value="""<div id='chart' onpointermove='window.drawLine(event.clientX, event.clientY);' onpointerdown='window.pointerDown(event.clientX, event.clientY);' onpointerup='window.pointerUp();' onpointerleave='window.pointerUp();' onpointercancel='window.pointerUp();' onclick='window.resetLine();'></div>
<style>
body {
user-select: none;
}
#chart hr {
width: 1px;
height: 1px;
clear: none;
border: 0;
padding:0;
display: inline-block;
position: relative;
vertical-align: top;
margin-top:32px;
}
#chart {
padding:0;
margin:0;
width:256px;
height:64px;
background-color:#808080;
touch-action: none;
}
</style>
""")
average = gr.HTML(value="""<label for='average'>Average</label><input id='average' type='range' style='width:256px;height:1em;' value='1' min='1' max='15' step='2' onclick='
var pts_a = document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value.split(\" \");
for (var i=0; i<256; i++) {
var avg = 0;
var div = this.value;
for (var j = i-parseInt(this.value/2); j <= i+parseInt(this.value/2); j++) {
if (pts_a[j]) {
avg += parseInt(pts_a[j]);
} else if (div > 1) {
div--;
}
}
pts_a[i] = Math.round((avg / div - 1) / 2) * 2 + 1;
document.getElementById(\"chart\").childNodes[i].style.height = pts_a[i] + \"px\";
document.getElementById(\"chart\").childNodes[i].style.marginTop = (64-pts_a[i])/2 + \"px\";
}
document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value = pts_a.join(\" \");
var evt = document.createEvent(\"Event\");
evt.initEvent(\"input\", true, false);
document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].dispatchEvent(evt);
' oninput='
this.parentNode.childNodes[2].innerText = this.value;
' onchange='this.click();'/><span>1</span>""")
with gr.Accordion(label="Levels", open=False):
blur_in = gr.Textbox(elem_id="blur_in", label="Kernel size", show_label=False, interactive=False, value=blurin)
with gr.Group():
with gr.Accordion(label="Locations", open=False):
output_frame.select(fn=select_frame, inputs=[output_mask], outputs=[output_mask, selected])
example_coords = """[
{"lat": 50.07379596793083, "lng": 14.437146122950555, "heading": 152.70303, "pitch": 2.607833999999997},
{"lat": 50.073799567020004, "lng": 14.437146774240507, "heading": 151.12973, "pitch": 2.8672300000000064},
{"lat": 50.07377647505558, "lng": 14.437161000659017, "heading": 151.41025, "pitch": 3.4802200000000028},
{"lat": 50.07379496839027, "lng": 14.437148958238538, "heading": 151.93391, "pitch": 2.843050000000005},
{"lat": 50.073823157821664, "lng": 14.437124189538856, "heading": 152.95769, "pitch": 4.233024999999998}
]"""
coords = gr.Textbox(elem_id="coords", value=example_coords, label="Coordinates", interactive=False)
mesh_order = gr.Textbox(elem_id="order", value="", label="Order", interactive=False)
load_all = gr.Checkbox(label="Load all")
with gr.Group():
camera = gr.HTML(value="""<a href='#' id='reset_cam' style='float:right;color:white' onclick='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
BABYLON.Engine.LastCreatedScene.activeCamera.metadata = {
screenshot: true,
pipeline: new BABYLON.DefaultRenderingPipeline(\"default\", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera])
}
}
BABYLON.Engine.LastCreatedScene.activeCamera.radius = 0;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4;
BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById(\"zoom\").value;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = document.getElementById(\"contrast\").value;
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = document.getElementById(\"exposure\").value;
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + Math.ceil(Math.log2(Math.PI/document.getElementById(\"zoom\").value))/2.0*Math.sqrt(2.0) + \"px)\";
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].oncontextmenu = function(e){e.preventDefault();}
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].ondrag = function(e){e.preventDefault();}
'>Reset camera</a>""")
html = gr.HTML(value="""<label for='zoom' style='width:5em'>Zoom</label><input id='zoom' type='range' style='width:256px;height:1em;' value='0.8' min='0.157' max='1.57' step='0.001' oninput='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.activeCamera.fov = this.value;
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.fov;
document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize/2.0*Math.sqrt(2.0) + \"px)\";
'/><span>0.8</span>""")
contrast = gr.HTML(value="""<label for='contrast' style='width:5em'>Contrast</label><input id='contrast' type='range' style='width:256px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = this.value;
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast;
'/><span>1.0</span>""")
exposure = gr.HTML(value="""<label for='exposure' style='width:5em'>Exposure</label><input id='exposure' type='range' style='width:256px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
var evt = document.createEvent(\"Event\");
evt.initEvent(\"click\", true, false);
document.getElementById(\"reset_cam\").dispatchEvent(evt);
}
BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = this.value;
this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure;
'/><span>1.0</span>""")
render = gr.Button("Render")
input_json.input(show_json, inputs=[input_json], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
def on_submit(uploaded_video,model_type,blur_in,boffset,bsize,coordinates):
global locations
locations = []
avg = [0, 0]
locations = json.loads(coordinates)
for k, location in enumerate(locations):
if "tiles" in locations[k]:
locations[k]["heading"] = locations[k]["tiles"]["originHeading"]
locations[k]["pitch"] = locations[k]["tiles"]["originPitch"]
else:
locations[k]["heading"] = 0
locations[k]["pitch"] = 0
if "location" in locations[k]:
locations[k] = locations[k]["location"]["latLng"]
avg[0] = avg[0] + locations[k]["lat"]
avg[1] = avg[1] + locations[k]["lng"]
else:
locations[k]["lat"] = 0
locations[k]["lng"] = 0
if len(locations) > 0:
avg[0] = avg[0] / len(locations)
avg[1] = avg[1] / len(locations)
for k, location in enumerate(locations):
lat = vincenty((location["lat"], 0), (avg[0], 0)) * 1000
lng = vincenty((0, location["lng"]), (0, avg[1])) * 1000
locations[k]["lat"] = float(lat / 2.5 * 111 * np.sign(location["lat"]-avg[0]))
locations[k]["lng"] = float(lng / 2.5 * 111 * np.sign(location["lng"]-avg[1]))
print(locations)
# 2.5m is height of camera on google street view car,
# distance from center of sphere to pavement roughly 255 - 144 = 111 units
# Process the video and get the path of the output video
output_video_path = make_video(uploaded_video,encoder=model_type,blur_data=blurin,o=boffset,b=bsize)
return output_video_path + (json.dumps(locations),)
submit.click(on_submit, inputs=[input_video, model_type, blur_in, boffset, bsize, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
render.click(None, inputs=[coords, mesh_order, output_frame, output_mask, selected, output_depth], outputs=None, js=load_model)
render.click(partial(get_mesh), inputs=[output_frame, output_mask, blur_in, load_all], outputs=[result, mesh_order])
example_files = [["./examples/streetview.mp4", "vits", blurin, 1, 32, example_coords]]
examples = gr.Examples(examples=example_files, fn=on_submit, cache_examples=True, inputs=[input_video, model_type, blur_in, boffset, bsize, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
if __name__ == '__main__':
demo.queue().launch() |