File size: 53,608 Bytes
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c269360
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c269360
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da463b3
5d85dd3
 
 
 
 
 
 
 
 
da463b3
 
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c269360
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da463b3
5d85dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7ccbf8
5d85dd3
 
 
da463b3
5d85dd3
 
 
82f167b
da463b3
5d85dd3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
import gradio as gr
import cv2
from PIL import Image
import numpy as np
import os
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.transforms import Compose
import tempfile
from functools import partial
import spaces
from zipfile import ZipFile
from vincenty import vincenty
import json
from collections import Counter
import mediapy

#from depth_anything.dpt import DepthAnything
#from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from huggingface_hub import hf_hub_download
from depth_anything_v2.dpt import DepthAnythingV2

DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model_configs = {
    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
    'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
encoder2name = {
    'vits': 'Small',
    'vitb': 'Base',
    'vitl': 'Large',
    'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
}

blurin = "1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1"
edge = []
gradient = None
params = { "fnum":0, "l":16 }
dcolor = []
pcolors = []
frame_selected = 0
frames = []
depths = []
masks = []
locations = []
mesh = []
mesh_n = []
scene = None

def zip_files(files_in, files_out):
    with ZipFile("depth_result.zip", "w") as zipObj:
        for idx, file in enumerate(files_in):
            zipObj.write(file, file.split("/")[-1])
        for idx, file in enumerate(files_out):
            zipObj.write(file, file.split("/")[-1])
    return "depth_result.zip"

def create_video(frames, fps, type):
    print("building video result")
    imgs = []
    for j, img in enumerate(frames):
        imgs.append(cv2.cvtColor(cv2.imread(img).astype(np.uint8), cv2.COLOR_BGR2RGB))

    mediapy.write_video(type + "_result.mp4", imgs, fps=fps)
    return type + "_result.mp4"

@torch.no_grad()
#@spaces.GPU
def predict_depth(image, model):
    return model.infer_image(image)
    
#def predict_depth(model, image):
#    return model(image)["depth"]

def make_video(video_path, outdir='./vis_video_depth', encoder='vits', blur_data=blurin):
    if encoder not in ["vitl","vitb","vits","vitg"]:
        encoder = "vits"

    model_name = encoder2name[encoder]
    model = DepthAnythingV2(**model_configs[encoder])
    filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
    state_dict = torch.load(filepath, map_location="cpu")
    model.load_state_dict(state_dict)
    model = model.to(DEVICE).eval()

    #mapper = {"vits":"small","vitb":"base","vitl":"large"}
    # DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
    # model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval()
    # Define path for temporary processed frames
    #temp_frame_dir = tempfile.mkdtemp()
    
    #margin_width = 50
    #to_tensor_transform = transforms.ToTensor()

    #DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
    # depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(encoder)).to(DEVICE).eval()
    #depth_anything = pipeline(task = "depth-estimation", model=f"nielsr/depth-anything-{mapper[encoder]}")
    
    # total_params = sum(param.numel() for param in depth_anything.parameters())
    # print('Total parameters: {:.2f}M'.format(total_params / 1e6))
    
    #transform = Compose([
    #    Resize(
    #        width=518,
    #        height=518,
    #        resize_target=False,
    #        keep_aspect_ratio=True,
    #        ensure_multiple_of=14,
    #        resize_method='lower_bound',
    #        image_interpolation_method=cv2.INTER_CUBIC,
    #    ),
    #    NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    #    PrepareForNet(),
    #])

    if os.path.isfile(video_path):
        if video_path.endswith('txt'):
            with open(video_path, 'r') as f:
                lines = f.read().splitlines()
        else:
            filenames = [video_path]
    else:
        filenames = os.listdir(video_path)
        filenames = [os.path.join(video_path, filename) for filename in filenames if not filename.startswith('.')]
        filenames.sort()
    
    # os.makedirs(outdir, exist_ok=True)
    
    for k, filename in enumerate(filenames):
        file_size = os.path.getsize(filename)/1024/1024
        if file_size > 128.0:
            print(f'File size of {filename} larger than 128Mb, sorry!')
            return filename
        print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
        
        raw_video = cv2.VideoCapture(filename)
        frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
        if frame_rate < 1:
            frame_rate = 1
        cframes = int(raw_video.get(cv2.CAP_PROP_FRAME_COUNT))
        print(f'frames: {cframes}, fps: {frame_rate}')
        # output_width = frame_width * 2 + margin_width
        
        #filename = os.path.basename(filename)
        # output_path = os.path.join(outdir, filename[:filename.rfind('.')] + '_video_depth.mp4')
        #with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmpfile:
        #    output_path = tmpfile.name
        #out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"avc1"), frame_rate, (output_width, frame_height))
        #fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        #out = cv2.VideoWriter(output_path, fourcc, frame_rate, (output_width, frame_height))
        global masks
        count = 0
        n = 0
        depth_frames = []
        orig_frames = []
        thumbnail_old = []

        while raw_video.isOpened():
            ret, raw_frame = raw_video.read()
            if not ret:
                break
            else:
                print(count)

            frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0
            frame_pil = Image.fromarray((frame * 255).astype(np.uint8))
            #frame = transform({'image': frame})['image']
            #frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE)
            raw_frame_bg = cv2.medianBlur(raw_frame, 255)

            #
            depth = predict_depth(raw_frame[:, :, ::-1], model)
            depth_gray = ((depth - depth.min()) / (depth.max() - depth.min()) * 255.0).astype(np.uint8)
            #
            
            #depth = to_tensor_transform(predict_depth(depth_anything, frame_pil))
            #depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0]
            #depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
            #depth = depth.cpu().numpy().astype(np.uint8)
            #depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_BONE)
            #depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGBA2GRAY)

            # Remove white border around map:
            # define lower and upper limits of white
            #white_lo = np.array([250,250,250])
            #white_hi = np.array([255,255,255])
            # mask image to only select white
            mask = cv2.inRange(depth_gray[0:int(depth_gray.shape[0]/8*6.5)-1, 0:depth_gray.shape[1]], 250, 255)
            # change image to black where we found white
            depth_gray[0:int(depth_gray.shape[0]/8*6.5)-1, 0:depth_gray.shape[1]][mask>0] = 0

            mask = cv2.inRange(depth_gray[int(depth_gray.shape[0]/8*6.5):depth_gray.shape[0], 0:depth_gray.shape[1]], 160, 255)
            depth_gray[int(depth_gray.shape[0]/8*6.5):depth_gray.shape[0], 0:depth_gray.shape[1]][mask>0] = 160

            depth_color = cv2.cvtColor(depth_gray, cv2.COLOR_GRAY2BGR)
            # split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
            # combined_frame = cv2.hconcat([raw_frame, split_region, depth_color])
            
            # out.write(combined_frame)
            # frame_path = os.path.join(temp_frame_dir, f"frame_{count:05d}.png")
            # cv2.imwrite(frame_path, combined_frame)

            #raw_frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2BGRA)
            #raw_frame[:, :, 3] = 255

            if cframes < 16:
              thumbnail = cv2.cvtColor(cv2.resize(raw_frame, (16,32)), cv2.COLOR_BGR2GRAY).flatten()
              if len(thumbnail_old) > 0:
                  diff = thumbnail - thumbnail_old
                  #print(diff)
                  c = Counter(diff)
                  value, cc = c.most_common()[0]
                  if value == 0 and cc > int(16*32*0.8):
                      count += 1
                      continue
              thumbnail_old = thumbnail
            
            cv2.imwrite(f"f{count}.png", blur_image(raw_frame, depth_color, blur_data))
            orig_frames.append(f"f{count}.png")
            
            cv2.imwrite(f"f{count}_dmap.png", depth_color)
            depth_frames.append(f"f{count}_dmap.png")

            cv2.imwrite(f"f{count}_mask.png", depth_gray)
            masks.append(f"f{count}_mask.png")
            count += 1

        final_vid = create_video(orig_frames, frame_rate, "orig")
        #final_vid = create_video(depth_frames, frame_rate, "depth")
            
        final_zip = zip_files(orig_frames, depth_frames)
        raw_video.release()
        # out.release()
        cv2.destroyAllWindows()

        global gradient
        global frame_selected
        global depths
        global frames
        frames = orig_frames
        depths = depth_frames

        if depth_color.shape[0] == 2048: #height
            gradient = cv2.imread('./gradient_large.png').astype(np.uint8)
        elif depth_color.shape[0] == 1024:
            gradient = cv2.imread('./gradient.png').astype(np.uint8)
        else:
            gradient = cv2.imread('./gradient_small.png').astype(np.uint8)
        
        return final_vid, final_zip, frames, masks[frame_selected], depths #output_path

def depth_edges_mask(depth):
    """Returns a mask of edges in the depth map.
    Args:
    depth: 2D numpy array of shape (H, W) with dtype float32.
    Returns:
    mask: 2D numpy array of shape (H, W) with dtype bool.
    """
    # Compute the x and y gradients of the depth map.
    depth_dx, depth_dy = np.gradient(depth)
    # Compute the gradient magnitude.
    depth_grad = np.sqrt(depth_dx ** 2 + depth_dy ** 2)
    # Compute the edge mask.
    mask = depth_grad > 0.05
    return mask

def pano_depth_to_world_points(depth):
    """
    360 depth to world points
    given 2D depth is an equirectangular projection of a spherical image
    Treat depth as radius
    longitude : -pi to pi
    latitude : -pi/2 to pi/2
    """

    # Convert depth to radius
    radius = (255 - depth.flatten())

    lon = np.linspace(0, np.pi*2, depth.shape[1])
    lat = np.linspace(0, np.pi, depth.shape[0])
    lon, lat = np.meshgrid(lon, lat)
    lon = lon.flatten()
    lat = lat.flatten()

    pts3d = [[0,0,0]]
    uv = [[0,0]]
    nl = [[0,0,0]]
    for i in range(0, 1): #(0,2)
        for j in range(0, 1): #(0,2)
            #rnd_lon = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
            #rnd_lat = (np.random.rand(depth.shape[0]*depth.shape[1]) - 0.5) / 8
            d_lon = lon + i/2 * np.pi*2 / depth.shape[1]
            d_lat = lat + j/2 * np.pi / depth.shape[0]

            nx = np.cos(d_lon) * np.sin(d_lat)
            ny = np.cos(d_lat)
            nz = np.sin(d_lon) * np.sin(d_lat)
            
            # Convert to cartesian coordinates
            x = radius * nx
            y = radius * ny
            z = radius * nz

            pts = np.stack([x, y, z], axis=1)
            uvs = np.stack([lon/np.pi/2, lat/np.pi], axis=1)
            nls = np.stack([-nx, -ny, -nz], axis=1)
            
            pts3d = np.concatenate((pts3d, pts), axis=0)
            uv = np.concatenate((uv, uvs), axis=0)
            nl = np.concatenate((nl, nls), axis=0)
            #print(f'i: {i}, j: {j}')
            j = j+1
        i = i+1
        
    return [pts3d, uv, nl]

def rgb2gray(rgb):
    return np.dot(rgb[...,:3], [0.333, 0.333, 0.333])

def get_mesh(image, depth, blur_data, loadall):
    global depths
    global pcolors
    global frame_selected
    global mesh
    global mesh_n
    global scene
    if loadall == False:
        mesh = []
        mesh_n = []
    fnum = frame_selected

    #print(image[fnum][0])
    #print(depth["composite"])

    depthc = cv2.imread(depths[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
    blur_img = blur_image(cv2.imread(image[fnum][0], cv2.IMREAD_UNCHANGED).astype(np.uint8), depthc, blur_data)
    gdepth = cv2.cvtColor(depthc, cv2.COLOR_RGB2GRAY) #rgb2gray(depthc)
    
    print('depth to gray - ok')
    points = pano_depth_to_world_points(gdepth)
    pts3d = points[0]
    uv = points[1]
    nl = points[2]
    print('radius from depth - ok')

    # Create a trimesh mesh from the points
    # Each pixel is connected to its 4 neighbors
    # colors are the RGB values of the image
    uvs = uv.reshape(-1, 2)
    #print(uvs)
    #verts = pts3d.reshape(-1, 3)
    verts = [[0,0,0]]
    normals = nl.reshape(-1, 3)
    rgba = cv2.cvtColor(blur_img, cv2.COLOR_RGB2RGBA)
    colors = rgba.reshape(-1, 4)
    clrs = [[128,128,128,0]]

    #for i in range(0,1): #(0,4)
    #clrs = np.concatenate((clrs, colors), axis=0)
        #i = i+1
    #verts, clrs

    #pcd = o3d.geometry.TriangleMesh.create_tetrahedron()
    #pcd.compute_vertex_normals()
    #pcd.paint_uniform_color((1.0, 1.0, 1.0))
    #mesh.append(pcd)
    #print(mesh[len(mesh)-1])
    if not str(fnum) in mesh_n:
        mesh_n.append(str(fnum))
    print('mesh - ok')

    # Save as glb
    glb_file = tempfile.NamedTemporaryFile(suffix='.glb', delete=False)
    #o3d.io.write_triangle_mesh(glb_file.name, pcd)
    print('file - ok')
    return "./TriangleWithoutIndices.gltf", glb_file.name, ",".join(mesh_n)

def blur_image(image, depth, blur_data):
    blur_a = blur_data.split()
    print(f'blur data {blur_data}')

    blur_frame = image.copy()
    j = 0
    while j < 256:
        i = 255 - j
        blur_lo = np.array([i,i,i])
        blur_hi = np.array([i+1,i+1,i+1])
        blur_mask = cv2.inRange(depth, blur_lo, blur_hi)
        
        print(f'kernel size {int(blur_a[j])}')
        blur = cv2.GaussianBlur(image, (int(blur_a[j]), int(blur_a[j])), 0)
                
        blur_frame[blur_mask>0] = blur[blur_mask>0]
        j = j + 1

    return blur_frame

def loadfile(f):
    return f

def show_json(txt):
    data = json.loads(txt)
    print(txt)
    i=0
    while i < len(data[2]):
        data[2][i] = data[2][i]["image"]["path"]
        data[4][i] = data[4][i]["path"]
        i=i+1
    return data[0]["video"]["path"], data[1]["path"], data[2], data[3]["background"]["path"], data[4], data[5]


def select_frame(d, evt: gr.SelectData):
    global dcolor
    global frame_selected
    global masks
    global edge
    
    if evt.index != frame_selected:
        edge = []
        mask = cv2.imread(depths[frame_selected]).astype(np.uint8)
        cv2.imwrite(masks[frame_selected], cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY))
        frame_selected = evt.index

    if len(dcolor) == 0:
        bg = [127, 127, 127, 255]
    else:
        bg = "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"
        
    return masks[frame_selected], frame_selected, bg

def switch_rows(v):
    global frames
    global depths
    if v == True:
        print(depths[0])
        return depths
    else:
        print(frames[0])
        return frames

def optimize(v, d):
    global pcolors
    global dcolor
    global frame_selected
    global frames
    global depths
    
    if v == True:
        ddepth = cv2.CV_16S
        kernel_size = 3
        l = 16

        dcolor = []
        for k, f in enumerate(frames):
            frame = cv2.imread(frames[k]).astype(np.uint8)
            
            # convert to np.float32
            f = np.float32(frame.reshape((-1,3)))
            # define criteria, number of clusters(K) and apply kmeans()
            criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 4, 1.0)
            ret,label,center=cv2.kmeans(f,l,None,criteria,4,cv2.KMEANS_RANDOM_CENTERS)
            # Now convert back into uint8, and make original image
            center = np.uint8(center)
            res = center[label.flatten()]
            frame = res.reshape((frame.shape))

            depth = cv2.imread(depths[k]).astype(np.uint8)
            mask = cv2.cvtColor(depth, cv2.COLOR_RGB2GRAY)
            dcolor.append(bincount(frame[mask==0]))
            print(dcolor[k])
            clrs = Image.fromarray(frame.astype(np.uint8)).convert('RGB').getcolors()
            i=0
            while i<len(clrs):
                clrs[i] = list(clrs[i][1])
                clrs[i].append(255)
                i=i+1
            print(clrs)
            pcolors = clrs
            
            #mask = cv2.convertScaleAbs(cv2.Laplacian(cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY), ddepth, ksize=kernel_size))
            #mask[mask>0] = 255
            #frame[mask==0] = (0, 0, 0)
            cv2.imwrite(frames[k], frame)

            #depth[mask==0] = (255,255,255)
            mask = cv2.inRange(frame, np.array([dcolor[k][0]-8, dcolor[k][1]-8, dcolor[k][2]-8]), np.array([dcolor[k][0]+8, dcolor[k][1]+8, dcolor[k][2]+8]))
            depth[mask>0] = (255,255,255)
            depth[depth.shape[0]-1:depth.shape[0], 0:depth.shape[1]] = (160, 160, 160)
            depth[0:1, 0:depth.shape[1]] = (0, 0, 0)
            cv2.imwrite(depths[k], depth)
            
    if d == False:
      return frames, "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"
    else:
      return depths, "[" + str(dcolor[frame_selected])[1:-1] + ", 255]"

def bincount(a):
    a2D = a.reshape(-1,a.shape[-1])
    col_range = (256, 256, 256) # generically : a2D.max(0)+1
    a1D = np.ravel_multi_index(a2D.T, col_range)
    return list(reversed(np.unravel_index(np.bincount(a1D).argmax(), col_range)))

def reset_mask():
    global frame_selected
    global masks
    global depths
    global edge

    edge = []
    mask = cv2.imread(depths[frame_selected]).astype(np.uint8)
    cv2.imwrite(masks[frame_selected], cv2.cvtColor(mask, cv2.COLOR_RGB2GRAY))
    return masks[frame_selected], depths

def apply_mask(d, b):
    global frames
    global frame_selected
    global masks
    global depths
    global edge

    edge = []
    mask = cv2.cvtColor(d["layers"][0], cv2.COLOR_RGBA2GRAY)
    mask[mask<255] = 0
    b = b*2+1
    dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
    mask = cv2.dilate(mask, dilation)
    mask_b = cv2.GaussianBlur(mask, (b,b), 0)
    b = b*2+1
    dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2 * b + 1, 2 * b + 1), (b, b))
    dmask = cv2.dilate(mask, dilation)
    dmask_b = cv2.GaussianBlur(dmask, (b,b), 0)

    for k, mk in enumerate(masks):
        if k != frame_selected and k < len(depths):
            cv2.imwrite(masks[k], dmask)
            frame = cv2.imread(frames[k], cv2.IMREAD_UNCHANGED).astype(np.uint8)
            frame[:, :, 3] = dmask_b
            cv2.imwrite(frames[k], frame)
        
    frame = cv2.imread(frames[frame_selected], cv2.IMREAD_UNCHANGED).astype(np.uint8)
    frame[:, :, 3] = 255 - mask_b
    cv2.imwrite(frames[frame_selected], frame)
    
    cv2.imwrite(masks[frame_selected], mask) #d["background"]
    return masks[frame_selected], depths, frames

def draw_mask(l, t, v, d, evt: gr.EventData):
    global depths
    global params
    global frame_selected
    global masks
    global gradient
    global edge
    
    points = json.loads(v)
    pts = np.array(points, np.int32)
    pts = pts.reshape((-1,1,2))

    if len(edge) == 0 or params["fnum"] != frame_selected or params["l"] != l:
      if len(edge) > 0:
          d["background"] = cv2.imread(depths[frame_selected]).astype(np.uint8)
          
          if d["background"].shape[0] == 2048: #height
            gradient = cv2.imread('./gradient_large.png').astype(np.uint8)
          elif d["background"].shape[0] == 1024:
            gradient = cv2.imread('./gradient.png').astype(np.uint8)
          else:
            gradient = cv2.imread('./gradient_small.png').astype(np.uint8)

      bg = cv2.cvtColor(d["background"], cv2.COLOR_RGBA2GRAY)

      diff = np.abs(bg.astype(np.int16)-cv2.cvtColor(gradient, cv2.COLOR_RGBA2GRAY).astype(np.int16)).astype(np.uint8)
      mask = cv2.inRange(diff, 0, t)
      #kernel = np.ones((c,c),np.float32)/(c*c)
      #mask = cv2.filter2D(mask,-1,kernel)
      dilation = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15-(t*2+1), 15-(t*2+1)), (t, t))
      mask = cv2.dilate(mask, dilation)

      #indices = np.arange(0,256)   # List of all colors 
      #divider = np.linspace(0,255,l+1)[1] # we get a divider
      #quantiz = np.intp(np.linspace(0,255,l)) # we get quantization colors
      #color_levels = np.clip(np.intp(indices/divider),0,l-1) # color levels 0,1,2..
      #palette = quantiz[color_levels]
      
      #for i in range(l):
      #    bg[(bg >= i*255/l) & (bg < (i+1)*255/l)] = i*255/(l-1)
      #bg = cv2.convertScaleAbs(palette[bg]).astype(np.uint8) # Converting image back to uint

      res = np.float32(bg.reshape((-1,1)))
      criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 4, 1.0)
      ret,label,center=cv2.kmeans(res,l,None,criteria,4,cv2.KMEANS_PP_CENTERS)
      center = np.uint8(center)
      res = center[label.flatten()]
      bg = res.reshape((bg.shape))
        
      bg[mask>0] = 0
      bg[bg==255] = 0

      params["fnum"] = frame_selected
      params["l"] = l

      d["layers"][0] = cv2.cvtColor(bg, cv2.COLOR_GRAY2RGBA)
      edge = bg.copy()
    else:
      bg = edge.copy()

    x = points[len(points)-1][0]
    y = points[len(points)-1][1]

                                                #int(t*256/l)
    mask = cv2.floodFill(bg, None, (x, y), 1, 0, 256, (4 | cv2.FLOODFILL_FIXED_RANGE))[2] #(4 | cv2.FLOODFILL_FIXED_RANGE | cv2.FLOODFILL_MASK_ONLY | 255 << 8)
    # 255 << 8 tells to fill with the value 255)
    mask = mask[1:mask.shape[0]-1, 1:mask.shape[1]-1]
    
    d["layers"][0][mask>0] = (255,255,255,255)
    
    return gr.ImageEditor(value=d)


def findNormals(format):
    global depths
    d_im = cv2.cvtColor(cv2.imread(depths[frame_selected]).astype(np.uint8), cv2.COLOR_BGR2GRAY)
    zy, zx = np.gradient(d_im)  
    # You may also consider using Sobel to get a joint Gaussian smoothing and differentation
    # to reduce noise
    #zx = cv2.Sobel(d_im, cv2.CV_64F, 1, 0, ksize=5)     
    #zy = cv2.Sobel(d_im, cv2.CV_64F, 0, 1, ksize=5)

    if format == "opengl":
        zy = -zy
        
    normal = np.dstack((np.ones_like(d_im), -zy, -zx))
    n = np.linalg.norm(normal, axis=2)
    normal[:, :, 0] /= n
    normal[:, :, 1] /= n
    normal[:, :, 2] /= n

    # offset and rescale values to be in 0-255
    normal += 1
    normal /= 2
    normal *= 255

    return (normal[:, :, ::-1]).astype(np.uint8)


load_model="""
async(c, o, b, p, d, n, m)=>{
  var intv = setInterval(function(){
    if (document.getElementById("iframe3D")===null || typeof document.getElementById("iframe3D")==="undefined") {
      try {
      if (typeof BABYLON !== "undefined" && BABYLON.Engine && BABYLON.Engine.LastCreatedScene) {
        BABYLON.Engine.LastCreatedScene.onAfterRenderObservable.add(function() { //onDataLoadedObservable

          var then = new Date().getTime();
          var now, delta;
          const interval = 1000 / 25;
          const tolerance = 0.1;
          BABYLON.Engine.LastCreatedScene.getEngine().stopRenderLoop();
          BABYLON.Engine.LastCreatedScene.getEngine().runRenderLoop(function () {
            now = new Date().getTime();
            delta = now - then;
            then = now - (delta % interval);
            if (delta >= interval - tolerance) {
                BABYLON.Engine.LastCreatedScene.render();
            }
          });
          
          var bg = JSON.parse(document.getElementById("bgcolor").getElementsByTagName("textarea")[0].value);
          BABYLON.Engine.LastCreatedScene.getEngine().setHardwareScalingLevel(1.0);
          for (var i=0; i<bg.length; i++) {
            bg[i] /= 255;
          }
          BABYLON.Engine.LastCreatedScene.clearColor = new BABYLON.Color4(bg[0], bg[1], bg[2], bg[3]);
          BABYLON.Engine.LastCreatedScene.ambientColor = new BABYLON.Color4(255,255,255,255);
          //BABYLON.Engine.LastCreatedScene.autoClear = false;
          //BABYLON.Engine.LastCreatedScene.autoClearDepthAndStencil = false;
          for (var i=0; i<BABYLON.Engine.LastCreatedScene.getNodes().length; i++) {
            if (BABYLON.Engine.LastCreatedScene.getNodes()[i].material) {
              BABYLON.Engine.LastCreatedScene.getNodes()[i].material.pointSize = Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value));
            }
          }
          BABYLON.Engine.LastCreatedScene.getAnimationRatio();
          //BABYLON.Engine.LastCreatedScene.activeCamera.inertia = 0.0;
        });
        if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
          BABYLON.Engine.LastCreatedScene.activeCamera.metadata = {
            pipeline: new BABYLON.DefaultRenderingPipeline("default", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera]) 
          }
        }
        BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4;
        BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = 1.0;
        BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = 1.0;

        BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById("zoom").value;

        document.getElementById("model3D").getElementsByTagName("canvas")[0].style.filter = "blur(" + Math.ceil(Math.log2(Math.PI/document.getElementById("zoom").value))/2.0*Math.sqrt(2.0) + "px)";
        document.getElementById("model3D").getElementsByTagName("canvas")[0].oncontextmenu = function(e){e.preventDefault();}
        document.getElementById("model3D").getElementsByTagName("canvas")[0].ondrag = function(e){e.preventDefault();}

        if (o.indexOf(""+n) < 0) {
          if (o != "") { o += ","; }
          o += n;
        }
        //alert(o);
        var o_ = o.split(",");
        var q = BABYLON.Engine.LastCreatedScene.meshes;
        for(i = 0; i < q.length; i++) {
          let mesh = q[i];
          mesh.dispose(false, true);
        }
        var dome = [];
        for (var j=0; j<o_.length; j++) {
          o_[j] = parseInt(o_[j]);
          dome[j] = new BABYLON.PhotoDome("dome"+j, p[o_[j]].image.url, 
          {
            resolution: 16,
            size: 512
          }, BABYLON.Engine.LastCreatedScene);
          var q = BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-2]._children;
          for(i = 0; i < q.length; i++) {
            let mesh = q[i];
            mesh.dispose(false, true);
          }
          //BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.needDepthPrePass = true;
          //BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].scaling.z = -1;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].alphaIndex = o_.length-j;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.diffuseTexture.hasAlpha = true;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].material.useAlphaFromDiffuseTexture = true;
          BABYLON.Engine.LastCreatedScene.meshes[BABYLON.Engine.LastCreatedScene.meshes.length-1].applyDisplacementMap(m[o_[j]].url, 0, 255, function(m){try{alert(BABYLON.Engine.Version);}catch(e){alert(e);}}, null, null, true, function(e){alert(e);});
        }
        clearInterval(intv);
      }
      } catch(e) {alert(e);}
    } else if (BABYLON || BABYLON == null) {
    try {
      BABYLON = null;
      if (document.getElementById("model3D").getElementsByTagName("canvas")[0]) {
        document.getElementById("model3D").getElementsByTagName("canvas")[0].remove();
      }
      document.getElementById("iframe3D").src = "index.htm";
      document.getElementById("iframe3D").onload = function() {
        if (o.indexOf(""+n) < 0) {
          if (o != "") { o += ","; }
          o += n;
        }
        alert(o);
        var o_ = o.split(",");
        document.getElementById("iframe3D").contentDocument.getElementById("coords").value = c;
        document.getElementById("iframe3D").contentDocument.getElementById("order").value = o;
        document.getElementById("iframe3D").contentDocument.getElementById("bgcolor").value = b;
        document.getElementById("iframe3D").contentDocument.getElementById("bgimage").value = "";
        document.getElementById("iframe3D").contentDocument.getElementById("bgdepth").value = "";
        for (var j=0; j<o_.length; j++) {
          o_[j] = parseInt(o_[j]);
          alert(o_[j]);
          document.getElementById("iframe3D").contentDocument.getElementById("bgimage").value += p[o_[j]].image.url + ",";
          document.getElementById("iframe3D").contentDocument.getElementById("bgdepth").value += m[o_[j]].url + ",";
        }
      }
      toggleDisplay("model");
      
      clearInterval(intv);
    } catch(e) {alert(e)}
    }
  }, 40);
}
"""

js = """
async()=>{
  console.log('Hi');

const chart = document.getElementById('chart');
const blur_in = document.getElementById('blur_in').getElementsByTagName('textarea')[0];
var md = false;
var xold = 128;
var yold = 32;
var a = new Array(256);
var l;

for (var i=0; i<256; i++) {
  const hr = document.createElement('hr');
  hr.style.backgroundColor = 'hsl(0,0%,' + (100-i/256*100) + '%)';
  chart.appendChild(hr);
}

function resetLine() {
  a.fill(1);
  for (var i=0; i<256; i++) {
    chart.childNodes[i].style.height = a[i] + 'px';
    chart.childNodes[i].style.marginTop = '32px';
  }
}
resetLine();
window.resetLine = resetLine;

function pointerDown(x, y) {
  md = true;
  xold = parseInt(x - chart.getBoundingClientRect().x);
  yold = parseInt(y - chart.getBoundingClientRect().y);
  chart.title = xold + ',' + yold;
}
window.pointerDown = pointerDown;

function pointerUp() {
  md = false;
  var evt = document.createEvent('Event');
  evt.initEvent('input', true, false);
  blur_in.dispatchEvent(evt);
  chart.title = '';
}
window.pointerUp = pointerUp;

function lerp(y1, y2, mu) { return y1*(1-mu)+y2*mu; }

function drawLine(x, y) {
  x = parseInt(x - chart.getBoundingClientRect().x);
  y = parseInt(y - chart.getBoundingClientRect().y);
  if (md === true && y >= 0 && y < 64 && x >= 0 && x < 256) {
    if (y < 32) {
      a[x] = Math.abs(32-y)*2 + 1;
      chart.childNodes[x].style.height = a[x] + 'px';
      chart.childNodes[x].style.marginTop = y + 'px';

      for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
        l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));

        if (l < 32) {
          a[i] = Math.abs(32-l)*2 + 1;
          chart.childNodes[i].style.height = a[i] + 'px';
          chart.childNodes[i].style.marginTop = l + 'px';
        } else if (l < 64) {
          a[i] = Math.abs(l-32)*2 + 1;
          chart.childNodes[i].style.height = a[i] + 'px';
          chart.childNodes[i].style.marginTop = (64-l) + 'px';
        }
      }
    } else if (y < 64) {
      a[x] = Math.abs(y-32)*2 + 1;
      chart.childNodes[x].style.height = a[x] + 'px';
      chart.childNodes[x].style.marginTop = (64-y) + 'px';

      for (var i=Math.min(xold, x)+1; i<Math.max(xold, x); i++) {
        l = parseInt(lerp( yold, y, (i-xold)/(x-xold) ));

        if (l < 32) {
          a[i] = Math.abs(32-l)*2 + 1;
          chart.childNodes[i].style.height = a[i] + 'px';
          chart.childNodes[i].style.marginTop = l + 'px';
        } else if (l < 64) {
          a[i] = Math.abs(l-32)*2 + 1;
          chart.childNodes[i].style.height = a[i] + 'px';
          chart.childNodes[i].style.marginTop = (64-l) + 'px';
        }
      }
    }
    blur_in.value = a.join(' ');
    xold = x;
    yold = y;
    chart.title = xold + ',' + yold;
  }
}
window.drawLine = drawLine;
  
}
"""

css = """
#img-display-container {
    max-height: 100vh;
    }
#img-display-input {
    max-height: 80vh;
    }
#img-display-output {
    max-height: 80vh;
    }
"""

title = "# Depth Anything V2 Video"
description = """**Depth Anything V2** on full video files.
Please refer to our [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), and [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""

    
#transform = Compose([
#        Resize(
#            width=518,
#            height=518,
#            resize_target=False,
#            keep_aspect_ratio=True,
#            ensure_multiple_of=14,
#            resize_method='lower_bound',
#            image_interpolation_method=cv2.INTER_CUBIC,
#        ),
#        NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
#        PrepareForNet(),
#])

# @torch.no_grad()
# def predict_depth(model, image):
#     return model(image)

with gr.Blocks(css=css, js=js) as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown("### Video Depth Prediction demo")

    with gr.Row():
        with gr.Column():
            input_json = gr.Textbox(elem_id="json_in", value="{}", label="JSON", interactive=False)
            input_url = gr.Textbox(elem_id="url_in", value="./examples/streetview.mp4", label="URL")
            input_video = gr.Video(label="Input Video", format="mp4")
            input_url.input(fn=loadfile, inputs=[input_url], outputs=[input_video])
            submit = gr.Button("Submit")
            output_frame = gr.Gallery(label="Frames", preview=True, columns=8192, interactive=False)
            output_switch = gr.Checkbox(label="Show depths")
            with gr.Accordion(label="Depths", open=False):
              output_depth = gr.Files(label="Depth files", interactive=False)
            output_switch.input(fn=switch_rows, inputs=[output_switch], outputs=[output_frame])
            optimize_switch = gr.Checkbox(label="Optimize")
            bgcolor = gr.Textbox(elem_id="bgcolor", value="[127, 127, 127, 255]", label="Background color", interactive=False)
            optimize_switch.input(fn=optimize, inputs=[optimize_switch, output_switch], outputs=[output_frame, bgcolor])
            output_mask = gr.ImageEditor(layers=False, sources=('upload', 'clipboard'), show_download_button=True, type="numpy", interactive=True, transforms=(None,), eraser=gr.Eraser(), brush=gr.Brush(default_size=0, colors=['black', '#505050', '#a0a0a0', 'white']), elem_id="image_edit")
            with gr.Row():
              selector = gr.HTML(value="""
            <a href='#' id='selector' onclick='if (this.style.fontWeight!=\"bold\") {
            this.style.fontWeight=\"bold\";
            document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].oncontextmenu = function(e){e.preventDefault();}
            document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].ondrag = function(e){e.preventDefault();}
            
            document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onclick = function(e) {
              var x = parseInt((e.clientX-e.target.getBoundingClientRect().x)*e.target.width/e.target.getBoundingClientRect().width);
              var y = parseInt((e.clientY-e.target.getBoundingClientRect().y)*e.target.height/e.target.getBoundingClientRect().height);

              var p = document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value.slice(1, -1);
              if (p != \"\") { p += \", \"; }
              p += \"[\" + x + \", \" + y + \"]\";
              document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value = \"[\" + p + \"]\";
              
              var evt = document.createEvent(\"Event\");
              evt.initEvent(\"input\", true, false);
              document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].dispatchEvent(evt);
            }
            document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onpointerdown = function(e) {
              
              document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].style.borderColor = \"#a0a0a0\";
            
            }
            document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onpointerup = function(e) {
              
              document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].style.borderColor = \"#ffffff\";
            
            }
            } else {
              this.style.fontWeight=\"normal\";
              document.getElementById(\"image_edit\").getElementsByTagName(\"canvas\")[0].onclick = null;
              
            }' title='Select point' style='text-decoration:none;color:white;'>⊹ Select point</a> <a href='#' id='clear_select' onclick='
              
              document.getElementById(\"mouse\").getElementsByTagName(\"textarea\")[0].value = \"[]\";
            
            ' title='Clear selection' style='text-decoration:none;color:white;'>✕ Clear</a>""")
              apply = gr.Button("Apply", size='sm')
              reset = gr.Button("Reset", size='sm')
            with gr.Accordion(label="Edge", open=False):
              levels = gr.Slider(label="Color levels", value=16, maximum=32, minimum=2, step=1)
              tolerance = gr.Slider(label="Tolerance", value=1, maximum=7, minimum=0, step=1)
              bsize = gr.Slider(label="Border size", value=15, maximum=256, minimum=1, step=2)
              mouse = gr.Textbox(elem_id="mouse", value="""[]""", interactive=False)
              mouse.input(fn=draw_mask, show_progress="minimal", inputs=[levels, tolerance, mouse, output_mask], outputs=[output_mask])
              apply.click(fn=apply_mask, inputs=[output_mask, bsize], outputs=[output_mask, output_depth, output_frame])
              reset.click(fn=reset_mask, inputs=None, outputs=[output_mask, output_depth])

            normals_out = gr.Image(label="Normal map", interactive=False)
            format_normals = gr.Radio(choices=["directx", "opengl"])
            find_normals = gr.Button("Find normals")
            find_normals.click(fn=findNormals, inputs=[format_normals], outputs=[normals_out])

        with gr.Column():
            model_type = gr.Dropdown([("small", "vits"), ("base", "vitb"), ("large", "vitl"), ("giant", "vitg")], type="value", value="vits", label='Model Type')
            processed_video = gr.Video(label="Output Video", format="mp4", interactive=False)
            processed_zip = gr.File(label="Output Archive", interactive=False)
            result = gr.Model3D(label="3D Mesh", clear_color=[0.5, 0.5, 0.5, 0.0], camera_position=[0, 90, 0], zoom_speed=2.0, pan_speed=2.0, interactive=True, elem_id="model3D") #, display_mode="point_cloud"
            chart_c = gr.HTML(elem_id="chart_c", value="""<div id='chart' onpointermove='window.drawLine(event.clientX, event.clientY);' onpointerdown='window.pointerDown(event.clientX, event.clientY);' onpointerup='window.pointerUp();' onpointerleave='window.pointerUp();' onpointercancel='window.pointerUp();' onclick='window.resetLine();'></div>
            <style>
  body {
    user-select: none;
  }
  #chart hr {
    width: 1px;
    height: 1px;
    clear: none;
    border: 0;
    padding:0;
    display: inline-block;
    position: relative;
    vertical-align: top;
    margin-top:32px;
  }
  #chart {
    padding:0;
    margin:0;
    width:256px;
    height:64px;
    background-color:#808080;
    touch-action: none;
  }
            </style>
            """)
            average = gr.HTML(value="""<label for='average'>Average</label><input id='average' type='range' style='width:256px;height:1em;' value='1' min='1' max='15' step='2' onclick='
              var pts_a = document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value.split(\" \");
              for (var i=0; i<256; i++) {
                var avg = 0;
                var div = this.value;
                for (var j = i-parseInt(this.value/2); j <= i+parseInt(this.value/2); j++) {
                  if (pts_a[j]) {
                    avg += parseInt(pts_a[j]);
                  } else if (div > 1) {
                    div--;
                  }
                }
                pts_a[i] = Math.round((avg / div - 1) / 2) * 2 + 1;

                document.getElementById(\"chart\").childNodes[i].style.height = pts_a[i] + \"px\";
                document.getElementById(\"chart\").childNodes[i].style.marginTop = (64-pts_a[i])/2 + \"px\";
              }
              document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].value = pts_a.join(\" \");

              var evt = document.createEvent(\"Event\");
              evt.initEvent(\"input\", true, false);
              document.getElementById(\"blur_in\").getElementsByTagName(\"textarea\")[0].dispatchEvent(evt);
            ' oninput='
              this.parentNode.childNodes[2].innerText = this.value;
            ' onchange='this.click();'/><span>1</span>""")
            with gr.Accordion(label="Blur levels", open=False):
                blur_in = gr.Textbox(elem_id="blur_in", label="Kernel size", show_label=False, interactive=False, value=blurin)
            with gr.Accordion(label="Locations", open=False):
                selected = gr.Number(elem_id="fnum", value=0, minimum=0, maximum=256, interactive=False)
                output_frame.select(fn=select_frame, inputs=[output_mask], outputs=[output_mask, selected, bgcolor])
                example_coords = """[
                  {"lat": 50.07379596793083, "lng": 14.437146122950555, "heading": 152.70303, "pitch": 2.607833999999997}, 
                  {"lat": 50.073799567020004, "lng": 14.437146774240507, "heading": 151.12973, "pitch": 2.8672300000000064}, 
                  {"lat": 50.07377647505558, "lng": 14.437161000659017, "heading": 151.41025, "pitch": 3.4802200000000028}, 
                  {"lat": 50.07379496839027, "lng": 14.437148958238538, "heading": 151.93391, "pitch": 2.843050000000005}, 
                  {"lat": 50.073823157821664, "lng": 14.437124189538856, "heading": 152.95769, "pitch": 4.233024999999998}
                ]"""
                coords = gr.Textbox(elem_id="coords", value=example_coords, label="Coordinates", interactive=False)
                mesh_order = gr.Textbox(elem_id="order", value="", label="Order", interactive=False)
                
            result_file = gr.File(elem_id="file3D", label="3D file", interactive=False)
            html = gr.HTML(value="""<label for='zoom'>Zoom</label><input id='zoom' type='range' style='width:256px;height:1em;' value='0.8' min='0.157' max='1.57' step='0.001' oninput='
              if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                var evt = document.createEvent(\"Event\");
                evt.initEvent(\"click\", true, false);
                document.getElementById(\"reset_cam\").dispatchEvent(evt);
              } 
              BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize = Math.ceil(Math.log2(Math.PI/this.value));
              BABYLON.Engine.LastCreatedScene.activeCamera.fov = this.value;
              this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.fov;

              document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize/2.0*Math.sqrt(2.0) + \"px)\";
            '/><span>0.8</span>""")
            camera = gr.HTML(value="""<a href='#' id='reset_cam' onclick='
              if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                BABYLON.Engine.LastCreatedScene.activeCamera.metadata = { 
                  screenshot: true,
                  pipeline: new BABYLON.DefaultRenderingPipeline(\"default\", true, BABYLON.Engine.LastCreatedScene, [BABYLON.Engine.LastCreatedScene.activeCamera]) 
                }
              } 
              BABYLON.Engine.LastCreatedScene.activeCamera.radius = 0;
              BABYLON.Engine.LastCreatedScene.getNodes()[parseInt(document.getElementById(\"fnum\").getElementsByTagName(\"input\")[0].value)+1].material.pointSize = Math.ceil(Math.log2(Math.PI/document.getElementById(\"zoom\").value));
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.samples = 4; 
              BABYLON.Engine.LastCreatedScene.activeCamera.fov = document.getElementById(\"zoom\").value;
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = document.getElementById(\"contrast\").value;
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = document.getElementById(\"exposure\").value;
              
              document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].style.filter = \"blur(\" + Math.ceil(Math.log2(Math.PI/document.getElementById(\"zoom\").value))/2.0*Math.sqrt(2.0) + \"px)\";
              document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].oncontextmenu = function(e){e.preventDefault();}
              document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0].ondrag = function(e){e.preventDefault();}
            '>reset camera</a>""")
            contrast = gr.HTML(value="""<label for='contrast'>Contrast</label><input id='contrast' type='range' style='width:256px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
              if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                var evt = document.createEvent(\"Event\");
                evt.initEvent(\"click\", true, false);
                document.getElementById(\"reset_cam\").dispatchEvent(evt);
              } 
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast = this.value;
              this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.contrast;
            '/><span>1.0</span>""")
            exposure = gr.HTML(value="""<label for='exposure'>Exposure</label><input id='exposure' type='range' style='width:256px;height:1em;' value='1.0' min='0' max='2' step='0.001' oninput='
              if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                var evt = document.createEvent(\"Event\");
                evt.initEvent(\"click\", true, false);
                document.getElementById(\"reset_cam\").dispatchEvent(evt);
              } 
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure = this.value;
              this.parentNode.childNodes[2].innerText = BABYLON.Engine.LastCreatedScene.activeCamera.metadata.pipeline.imageProcessing.exposure;
            '/><span>1.0</span>""")
            canvas = gr.HTML(value="""<a href='#' onclick='
              if (!BABYLON.Engine.LastCreatedScene.activeCamera.metadata) {
                var evt = document.createEvent(\"Event\");
                evt.initEvent(\"click\", true, false);
                document.getElementById(\"reset_cam\").dispatchEvent(evt);
              } 
              BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot = true;

              BABYLON.Engine.LastCreatedScene.getEngine().onEndFrameObservable.add(function() {
                if (BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot === true) {
                  BABYLON.Engine.LastCreatedScene.activeCamera.metadata.screenshot = false;
                  try {
                    BABYLON.Tools.CreateScreenshotUsingRenderTarget(BABYLON.Engine.LastCreatedScene.getEngine(), BABYLON.Engine.LastCreatedScene.activeCamera, 
                      { precision: 1.0 }, (durl) => { 
                        var cnvs = document.getElementById(\"model3D\").getElementsByTagName(\"canvas\")[0]; //.getContext(\"webgl2\");
                        var svgd = `<svg id=\"svg_out\" viewBox=\"0 0 ` + cnvs.width + ` ` + cnvs.height + `\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">
                          <defs>
                            <filter id=\"blur\" x=\"0\" y=\"0\" xmlns=\"http://www.w3.org/2000/svg\">
                              <feGaussianBlur in=\"SourceGraphic\" stdDeviation=\"` + BABYLON.Engine.LastCreatedScene.getNodes()[1].material.pointSize/2.0*Math.sqrt(2.0) + `\" />
                            </filter>
                          </defs>
                          <image filter=\"url(#blur)\" id=\"svg_img\" x=\"0\" y=\"0\" width=\"` + cnvs.width + `\" height=\"` + cnvs.height + `\" xlink:href=\"` + durl + `\"/>
                        </svg>`;
                        document.getElementById(\"cnv_out\").width = cnvs.width;
                        document.getElementById(\"cnv_out\").height = cnvs.height;
                        document.getElementById(\"img_out\").src = \"data:image/svg+xml;base64,\" + btoa(svgd);        
                      }
                    );
                  } catch(e) { alert(e); }
                  // https://forum.babylonjs.com/t/best-way-to-save-to-jpeg-snapshots-of-scene/17663/11
                }
              });
            '/>snapshot</a><br/><img src='' id='img_out' onload='
              var ctxt = document.getElementById(\"cnv_out\").getContext(\"2d\");
              ctxt.drawImage(this, 0, 0); 
            '/><br/>
            <canvas id='cnv_out'/>""")
            load_all = gr.Checkbox(label="Load all")
            render = gr.Button("Render")
            input_json.input(show_json, inputs=[input_json], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
    
    def on_submit(uploaded_video,model_type,blur_in,coordinates):
        global locations
        locations = []
        avg = [0, 0]
        
        locations = json.loads(coordinates)
        for k, location in enumerate(locations):
            if "tiles" in locations[k]:
                locations[k]["heading"] = locations[k]["tiles"]["originHeading"]
                locations[k]["pitch"] = locations[k]["tiles"]["originPitch"]
            else:
                locations[k]["heading"] = 0
                locations[k]["pitch"] = 0

            if "location" in locations[k]:
                locations[k] = locations[k]["location"]["latLng"]
                avg[0] = avg[0] + locations[k]["lat"]
                avg[1] = avg[1] + locations[k]["lng"]
            else:
                locations[k]["lat"] = 0
                locations[k]["lng"] = 0
                
        if len(locations) > 0:
            avg[0] = avg[0] / len(locations)
            avg[1] = avg[1] / len(locations)
            
        for k, location in enumerate(locations):
            lat = vincenty((location["lat"], 0), (avg[0], 0)) * 1000
            lng = vincenty((0, location["lng"]), (0, avg[1])) * 1000
            locations[k]["lat"] = float(lat / 2.5 * 95 * np.sign(location["lat"]-avg[0]))
            locations[k]["lng"] = float(lng / 2.5 * 95 * np.sign(location["lng"]-avg[1]))
        print(locations)
            
        # Process the video and get the path of the output video
        output_video_path = make_video(uploaded_video,encoder=model_type,blur_data=blurin)

        return output_video_path + (json.dumps(locations),)

    submit.click(on_submit, inputs=[input_video, model_type, blur_in, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
    render.click(None, inputs=[coords, mesh_order, bgcolor, output_frame, output_mask, selected, output_depth], outputs=None, js=load_model)
    render.click(partial(get_mesh), inputs=[output_frame, output_mask, blur_in, load_all], outputs=[result, result_file, mesh_order])

    example_files = [["./examples/streetview.mp4", "vits", blurin, example_coords]]
    examples = gr.Examples(examples=example_files, fn=on_submit, cache_examples=True, inputs=[input_video, model_type, blur_in, coords], outputs=[processed_video, processed_zip, output_frame, output_mask, output_depth, coords])
    

if __name__ == '__main__':
    demo.queue().launch()