File size: 6,187 Bytes
79f6504 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import io
import os
import base64
import librosa
import numpy as np
from io import BytesIO
import streamlit as st
from pydub import AudioSegment
import matplotlib.pyplot as plt
from scipy.io.wavfile import write
from src.denoise import denoise
from myrecorder import recorder
SR = 16000
CONTAINER_HEIGHT = 380
def np_audio_to_bytesio(np_audio, np_audio_sr):
_bytes = bytes()
byte_io = io.BytesIO(_bytes)
write(byte_io, np_audio_sr, np_audio)
bytes_audio = byte_io.read()
return bytes_audio
def autoplay_audio(audio: str):
audio_base64 = base64.b64encode(audio).decode('utf-8')
audio_tag = f'<audio autoplay="true" src="data:audio/wav;base64,{audio_base64}">'
st.markdown(audio_tag, unsafe_allow_html=True)
def load_noisy_speech(root=os.path.join(os.getcwd(), 'noisy_speech')):
noisy_speech_paths = {'EN':{}, 'JA': {}}
noisy_speech_names = os.listdir(root)
for name in noisy_speech_names:
splt = name.split('_')
lang, snr = splt[0].upper(), int(splt[1][:2])
noisy_speech_paths[lang][snr] = os.path.join(root, name)
en_keys = list(noisy_speech_paths['EN'].keys())
en_keys.sort()
en_keys.reverse()
noisy_speech_paths['EN'] = {f'{key}dB': noisy_speech_paths['EN'][key] for key in en_keys}
ja_keys = list(noisy_speech_paths['JA'].keys())
ja_keys.sort()
ja_keys.reverse()
noisy_speech_paths['JA'] = {f'{key}dB': noisy_speech_paths['JA'][key] for key in ja_keys}
return noisy_speech_paths
def load_wav(wav_path):
wav_22k, sr = librosa.load(wav_path)
wav_16k = librosa.resample(wav_22k, orig_sr=sr, target_sr=SR)
return wav_22k, wav_16k
def wav_to_spec(wav, sr):
if sr == 16000:
wav = librosa.resample(wav, orig_sr=sr, target_sr=22050)
spec = np.abs(librosa.stft(wav))
spec = librosa.amplitude_to_db(spec, ref=np.max)
return spec
def export_spec_to_buffer(spec):
plt.rcParams['figure.figsize'] = (16, 4.5)
plt.rc('axes', labelsize=15)
plt.rc('xtick', labelsize=15)
plt.rc('ytick', labelsize=15)
librosa.display.specshow(spec, y_axis='log', x_axis='time')
img_buffer = BytesIO()
plt.savefig(img_buffer, format='JPEG', bbox_inches='tight', pad_inches=0)
return img_buffer
def process_recorded_wav_bytes(wav_bytes, sr):
file = BytesIO(wav_bytes)
audio = AudioSegment.from_file(file=file, format='wav')
audio = audio.set_sample_width(2)
audio = audio.set_channels(1)
audio_22k = audio.set_frame_rate(sr)
audio_16k = audio.set_frame_rate(SR)
audio_22k = np.array(audio_22k.get_array_of_samples(), dtype=np.float32)
audio_16k = np.array(audio_16k.get_array_of_samples(), dtype=np.float32)
return audio_22k, audio_16k
def main():
st.set_page_config(
page_title="speech-denoising-app",
layout="wide"
)
logo_space, title_space, _ = st.columns([1, 5, 1], gap="small")
with logo_space:
st.write(
"""
<div style="display: flex; justify-content: left;">
<b><span style="text-align: center; color: #101414; font-size: 14px">FPT Corporation</span></b>
</div>
""",
unsafe_allow_html=True
)
st.image('aic-logo.png')
with title_space:
st.image('logo.png')
noisy_speech_files = load_noisy_speech()
input_space, output_space = st.columns([1, 1], gap="medium")
_, record_space, _, compute_space= st.columns([0.7, 1, 1, 1], gap="small")
with record_space:
record = recorder(
start_prompt="Start Recording",
stop_prompt="Stop Recording",
just_once=False,
use_container_width=False,
format="wav",
callback=None,
args=(),
kwargs={},
key=None
)
with compute_space:
compute = st.button('Denoise')
with input_space.container(height=CONTAINER_HEIGHT, border=True):
lang_select_space, snr_select_space = st.columns([1, 1], gap="small")
with lang_select_space:
language_select = st.selectbox("Language", list(noisy_speech_files.keys()))
with snr_select_space:
if language_select:
snr_select = st.selectbox("SNR Level", list(noisy_speech_files[language_select].keys()))
if record:
wav_bytes_record = record['bytes']
sr = record['sample_rate']
noisy_wav_22k, noisy_wav = process_recorded_wav_bytes(wav_bytes_record, sr=22050)
noisy_spec = wav_to_spec(noisy_wav_22k, sr=22050)
noisy_spec_buff = export_spec_to_buffer(noisy_spec)
st.audio(wav_bytes_record, format="wav")
st.image(image=noisy_spec_buff)
elif language_select and snr_select:
audio_path = noisy_speech_files[language_select][snr_select]
noisy_wav_22k, noisy_wav = load_wav(audio_path)
noisy_spec = wav_to_spec(noisy_wav_22k, sr=22050)
noisy_spec_buff = export_spec_to_buffer(noisy_spec)
st.audio(audio_path, format="wav")
st.image(image=noisy_spec_buff)
with output_space.container(height=CONTAINER_HEIGHT, border=True):
st.write(
"""
<div style="display: flex; justify-content: center;">
<b><span style="text-align: center; color: #808080; font-size: 51.5px">Output</span></b>
</div>
""",
unsafe_allow_html=True
)
if noisy_wav.any() and compute:
denoised_wav = denoise(noisy_wav)
st.audio(denoised_wav, sample_rate=SR, format="audio/wav")
denoised_spec = wav_to_spec(denoised_wav, sr=SR)
denoised_spec_buff = export_spec_to_buffer(denoised_spec)
st.image(image=denoised_spec_buff)
record = None
if __name__ == '__main__':
main() |