File size: 6,187 Bytes
79f6504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import io
import os
import base64
import librosa
import numpy as np
from io import BytesIO
import streamlit as st
from pydub import AudioSegment
import matplotlib.pyplot as plt
from scipy.io.wavfile import write
from src.denoise import denoise
from myrecorder import recorder


SR = 16000
CONTAINER_HEIGHT = 380


def np_audio_to_bytesio(np_audio, np_audio_sr):
    _bytes = bytes()
    byte_io = io.BytesIO(_bytes)
    write(byte_io, np_audio_sr, np_audio)
    bytes_audio = byte_io.read()
    return bytes_audio


def autoplay_audio(audio: str):
    audio_base64 = base64.b64encode(audio).decode('utf-8')
    audio_tag = f'<audio autoplay="true" src="data:audio/wav;base64,{audio_base64}">'
    st.markdown(audio_tag, unsafe_allow_html=True)


def load_noisy_speech(root=os.path.join(os.getcwd(), 'noisy_speech')):
    noisy_speech_paths = {'EN':{}, 'JA': {}}
    noisy_speech_names = os.listdir(root)
    for name in noisy_speech_names:
        splt = name.split('_')
        lang, snr = splt[0].upper(), int(splt[1][:2])
        noisy_speech_paths[lang][snr] = os.path.join(root, name)
        
    en_keys = list(noisy_speech_paths['EN'].keys())
    en_keys.sort()
    en_keys.reverse()
    noisy_speech_paths['EN'] = {f'{key}dB': noisy_speech_paths['EN'][key] for key in en_keys}
    
    ja_keys = list(noisy_speech_paths['JA'].keys())
    ja_keys.sort()
    ja_keys.reverse()
    noisy_speech_paths['JA'] = {f'{key}dB': noisy_speech_paths['JA'][key] for key in ja_keys}
    
    return noisy_speech_paths


def load_wav(wav_path):
    wav_22k, sr = librosa.load(wav_path)
    wav_16k = librosa.resample(wav_22k, orig_sr=sr, target_sr=SR)
    return wav_22k, wav_16k


def wav_to_spec(wav, sr):
    if sr == 16000:
        wav = librosa.resample(wav, orig_sr=sr, target_sr=22050)
    spec = np.abs(librosa.stft(wav))
    spec = librosa.amplitude_to_db(spec, ref=np.max)
    return spec


def export_spec_to_buffer(spec):
    plt.rcParams['figure.figsize'] = (16, 4.5)
    plt.rc('axes', labelsize=15)
    plt.rc('xtick', labelsize=15)
    plt.rc('ytick', labelsize=15)
    librosa.display.specshow(spec, y_axis='log', x_axis='time')
    img_buffer = BytesIO()
    plt.savefig(img_buffer, format='JPEG', bbox_inches='tight', pad_inches=0)
    return img_buffer


def process_recorded_wav_bytes(wav_bytes, sr):
    file = BytesIO(wav_bytes)
    audio = AudioSegment.from_file(file=file, format='wav')
    audio = audio.set_sample_width(2)
    audio = audio.set_channels(1)
    audio_22k = audio.set_frame_rate(sr)
    audio_16k = audio.set_frame_rate(SR)
    audio_22k = np.array(audio_22k.get_array_of_samples(), dtype=np.float32)
    audio_16k = np.array(audio_16k.get_array_of_samples(), dtype=np.float32)
    return audio_22k, audio_16k


def main():
    
    st.set_page_config(
        page_title="speech-denoising-app",
        layout="wide"
    )
    
    logo_space, title_space, _ = st.columns([1, 5, 1], gap="small")
    
    with logo_space:
        st.write(
            """

            <div style="display: flex; justify-content: left;">

                <b><span style="text-align: center; color: #101414; font-size: 14px">FPT Corporation</span></b>

            </div>

            """,
            unsafe_allow_html=True
        )
        st.image('aic-logo.png')
    
    with title_space:
        st.image('logo.png')
        
    noisy_speech_files = load_noisy_speech()

    input_space, output_space = st.columns([1, 1], gap="medium")
    _, record_space, _, compute_space= st.columns([0.7, 1, 1, 1], gap="small")
    
    with record_space:
        record = recorder(
            start_prompt="Start Recording",
            stop_prompt="Stop Recording",
            just_once=False,
            use_container_width=False,
            format="wav",
            callback=None,
            args=(),
            kwargs={},
            key=None
        )
        
    with compute_space:
        compute = st.button('Denoise')
    
    with input_space.container(height=CONTAINER_HEIGHT, border=True):
        lang_select_space, snr_select_space = st.columns([1, 1], gap="small")
        with lang_select_space:
            language_select = st.selectbox("Language", list(noisy_speech_files.keys()))
        with snr_select_space:
            if language_select:
                snr_select = st.selectbox("SNR Level", list(noisy_speech_files[language_select].keys()))
        
        if record:
            wav_bytes_record = record['bytes']
            sr = record['sample_rate']
            noisy_wav_22k, noisy_wav = process_recorded_wav_bytes(wav_bytes_record, sr=22050)
            noisy_spec = wav_to_spec(noisy_wav_22k, sr=22050)
            noisy_spec_buff = export_spec_to_buffer(noisy_spec)
            
            st.audio(wav_bytes_record, format="wav")
            st.image(image=noisy_spec_buff)

        elif language_select and snr_select:
            audio_path = noisy_speech_files[language_select][snr_select]
            noisy_wav_22k, noisy_wav = load_wav(audio_path)
            noisy_spec = wav_to_spec(noisy_wav_22k, sr=22050)
            noisy_spec_buff = export_spec_to_buffer(noisy_spec)
        
            st.audio(audio_path, format="wav")
            st.image(image=noisy_spec_buff)
    
    with output_space.container(height=CONTAINER_HEIGHT, border=True):
        st.write(
            """

            <div style="display: flex; justify-content: center;">

                <b><span style="text-align: center; color: #808080; font-size: 51.5px">Output</span></b>

            </div>

            """,
            unsafe_allow_html=True
        )
        if noisy_wav.any() and compute:
            denoised_wav = denoise(noisy_wav)
            st.audio(denoised_wav, sample_rate=SR, format="audio/wav")
            denoised_spec = wav_to_spec(denoised_wav, sr=SR)
            denoised_spec_buff = export_spec_to_buffer(denoised_spec)
            st.image(image=denoised_spec_buff)
            record = None
        

if __name__ == '__main__':
    main()