File size: 11,291 Bytes
441a978 79f6504 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import io
import os
import base64
import librosa
import numpy as np
from io import BytesIO
import streamlit as st
from pydub import AudioSegment
import matplotlib.pyplot as plt
from scipy.io.wavfile import write
from src.denoise import denoise
from myrecorder import recorder
SR = 16000
CONTAINER_HEIGHT = 340
def np_audio_to_bytesio(np_audio, np_audio_sr):
_bytes = bytes()
byte_io = io.BytesIO(_bytes)
write(byte_io, np_audio_sr, np_audio)
bytes_audio = byte_io.read()
return bytes_audio
def autoplay_audio(audio: str):
audio_base64 = base64.b64encode(audio).decode('utf-8')
audio_tag = f'<audio autoplay="true" src="data:audio/wav;base64,{audio_base64}">'
st.markdown(audio_tag, unsafe_allow_html=True)
def load_noisy_speech(root=os.path.join(os.getcwd(), 'noisy_speech')):
noisy_speech_paths = {'EN':{}, 'JA': {}}
noisy_speech_names = os.listdir(root)
for name in noisy_speech_names:
splt = name.split('_')
lang, snr = splt[0].upper(), int(splt[1][:2])
noisy_speech_paths[lang][snr] = os.path.join(root, name)
en_keys = list(noisy_speech_paths['EN'].keys())
en_keys.sort()
en_keys.reverse()
noisy_speech_paths['EN'] = {f'{key}dB': noisy_speech_paths['EN'][key] for key in en_keys}
ja_keys = list(noisy_speech_paths['JA'].keys())
ja_keys.sort()
ja_keys.reverse()
noisy_speech_paths['JA'] = {f'{key}dB': noisy_speech_paths['JA'][key] for key in ja_keys}
return noisy_speech_paths
def load_wav(wav_path):
wav_22k, sr = librosa.load(wav_path)
wav_16k = librosa.resample(wav_22k, orig_sr=sr, target_sr=SR)
return wav_22k, wav_16k
def wav_to_spec(wav, sr):
if sr == 16000:
wav = librosa.resample(wav, orig_sr=sr, target_sr=22050)
spec = np.abs(librosa.stft(wav))
spec = librosa.amplitude_to_db(spec, ref=np.max)
return spec
def export_spec_to_buffer(spec):
plt.clf()
plt.rcParams['figure.figsize'] = (16, 3.6)
plt.rc('axes', labelsize=15)
plt.rc('xtick', labelsize=15)
plt.rc('ytick', labelsize=15)
librosa.display.specshow(spec, y_axis='linear', x_axis='time')
img_buffer = BytesIO()
img_buffer.truncate(0) # Remove all contents
img_buffer.seek(0) # Reset the pointer to the start
plt.savefig(img_buffer, format='JPEG', bbox_inches='tight', pad_inches=0)
plt.close('all')
return img_buffer
def process_recorded_wav_bytes(wav_bytes, sr):
file = BytesIO(wav_bytes)
audio = AudioSegment.from_file(file=file, format='wav')
audio = audio.set_sample_width(2)
audio = audio.set_channels(1)
audio_22k = audio.set_frame_rate(sr)
audio_16k = audio.set_frame_rate(SR)
audio_22k = np.array(audio_22k.get_array_of_samples(), dtype=np.float32)
audio_16k = np.array(audio_16k.get_array_of_samples(), dtype=np.float32)
return audio_22k, audio_16k
def main():
st.set_page_config(
page_title="speech-denoising-app",
layout="wide"
)
logo_space, title_space, _, tooltip_space = st.columns([2.03, 5, 1, 0.75], gap="small")
with logo_space:
st.write(
"""
<div style="display: flex; justify-content: left;">
<b><span style="text-align: center; color: #101414; font-size: 10px">FPT Corporation</span></b>
</div>
""",
unsafe_allow_html=True
)
st.image('logo.png', width=48)
with title_space:
st.image('title.png', width=640)
with tooltip_space:
st.markdown(
"""
<style>
.tooltip {
position: relative;
display: inline-block;
cursor: pointer;
background-color: rgba(0, 76, 153, 1); /* Blue button color */
padding: 10px;
border-radius: 50%;
font-size: 16px;
font-weight: bold;
width: 40px;
height: 40px;
text-align: center;
line-height: 20px;
color: white; /* Text color */
box-shadow: 2px 2px 5px rgba(0, 0, 0, 0.2);
}
.tooltip .tooltiptext {
visibility: hidden;
width: 300px; /* Adjust width for readability */
background-color: #333; /* Dark background for contrast */
color: #fff;
text-align: left; /* Align text to the left */
border-radius: 8px;
padding: 15px; /* Add padding for spacing */
position: absolute;
z-index: 1;
top: 150%; /* Position below the button */
left: 50%;
transform: translateX(-50%);
opacity: 0;
transition: opacity 0.3s;
font-size: 14px;
line-height: 1.8; /* Adjust line height for readability */
white-space: normal; /* Allow wrapping of text */
}
.tooltip:hover .tooltiptext {
visibility: visible;
opacity: 1;
}
</style>
""",
unsafe_allow_html=True,
)
st.markdown(
"""
<div class="tooltip">
ℹ
<span class="tooltiptext">
<strong>Steps:</strong><br>
1) Denoise your own speech: Click <em>Start recording</em>, then <em>Stop recording</em> when you are finished.<br>
2) Click <em>"Denoise"</em> and wait for a few seconds.<br>
3) Both the original audio and denoised audio will be available for playback.<br><br>
<strong>Note:</strong> Playing "noise" on your device while recording your speech to emulate speaking in a noisy environment will not work as intended. To do this emulation more realistically, play the noise on a different device (such as your phone) while recording your speech.
</span>
</div>
""",
unsafe_allow_html=True,
)
tab1, tab2 = st.tabs(["📂Denoise our samples speech", "🎙️Denoise your own speech"])
with tab1:
noisy_speech_files = load_noisy_speech()
input_space_tab1, output_space_tab1 = st.columns([1, 1], gap="medium")
_, _, _, compute_space_tab1= st.columns([0.7, 1, 1, 1], gap="small")
with compute_space_tab1:
compute_tab1 = st.button('Denoise', key='denoise_tab1')
with input_space_tab1.container(height=CONTAINER_HEIGHT, border=True):
lang_select_space, snr_select_space = st.columns([1, 1], gap="small")
with lang_select_space:
language_select = st.selectbox("Language", list(noisy_speech_files.keys()))
with snr_select_space:
if language_select:
snr_select = st.selectbox("SNR Level", list(noisy_speech_files[language_select].keys()))
audio_path_tab1 = noisy_speech_files[language_select][snr_select]
noisy_wav_22k_tab1, noisy_wav_tab1 = load_wav(audio_path_tab1)
noisy_spec_tab1 = wav_to_spec(noisy_wav_22k_tab1, sr=22050)
noisy_spec_buff_tab1 = export_spec_to_buffer(noisy_spec_tab1)
st.audio(audio_path_tab1, format="wav")
st.image(image=noisy_spec_buff_tab1)
with output_space_tab1.container(height=CONTAINER_HEIGHT, border=True):
st.write(
"""
<div style="display: flex; justify-content: center;">
<b><span style="text-align: center; color: #808080; font-size: 51.5px">Output</span></b>
</div>
""",
unsafe_allow_html=True
)
if noisy_wav_tab1.any() and compute_tab1:
with st.spinner("Denoising..."):
denoised_wav_tab1 = denoise(noisy_wav_tab1)
st.audio(denoised_wav_tab1, sample_rate=SR, format="audio/wav")
denoised_spec_tab1 = wav_to_spec(denoised_wav_tab1, sr=SR)
denoised_spec_buff_tab1 = export_spec_to_buffer(denoised_spec_tab1)
st.image(image=denoised_spec_buff_tab1)
with tab2:
input_space_tab2, output_space_tab2 = st.columns([1, 1], gap="medium")
_, record_space, _, compute_space_tab2 = st.columns([0.7, 1, 1, 1], gap="small")
with record_space:
record = recorder(
start_prompt="Start Recording",
stop_prompt="Stop Recording",
just_once=False,
use_container_width=False,
format="wav",
callback=None,
args=(),
kwargs={},
key="tab2_recorder"
)
with compute_space_tab2:
compute_tab2 = st.button('Denoise', key='denoise_tab2')
noisy_wav_tab2 = np.array([])
with input_space_tab2.container(height=CONTAINER_HEIGHT, border=True):
st.write(
"""
<div style="display: flex; justify-content: center;">
<b><span style="text-align: center; color: #808080; font-size: 51.5px">Input</span></b>
</div>
""",
unsafe_allow_html=True
)
if record:
wav_bytes_record = record['bytes']
sr = record['sample_rate']
noisy_wav_22k_tab2, noisy_wav_tab2 = process_recorded_wav_bytes(wav_bytes_record, sr=22050)
noisy_spec_tab2 = wav_to_spec(noisy_wav_22k_tab2, sr=22050)
noisy_spec_buff_tab2 = export_spec_to_buffer(noisy_spec_tab2)
st.audio(wav_bytes_record, format="wav")
st.image(image=noisy_spec_buff_tab2)
with output_space_tab2.container(height=CONTAINER_HEIGHT, border=True):
st.write(
"""
<div style="display: flex; justify-content: center;">
<b><span style="text-align: center; color: #808080; font-size: 51.5px">Output</span></b>
</div>
""",
unsafe_allow_html=True
)
if noisy_wav_tab2.any() and compute_tab2:
with st.spinner("Denoising..."):
denoised_wav_tab2 = denoise(noisy_wav_tab2)
st.audio(denoised_wav_tab2, sample_rate=SR, format="audio/wav")
denoised_spec_tab2 = wav_to_spec(denoised_wav_tab2, sr=SR)
denoised_spec_buff_tab2 = export_spec_to_buffer(denoised_spec_tab2)
st.image(image=denoised_spec_buff_tab2)
record = None
if __name__ == '__main__':
main() |