|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from src.utils import weight_scaling_init
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ScaledDotProductAttention(nn.Module):
|
|
''' Scaled Dot-Product Attention '''
|
|
|
|
def __init__(self, temperature, attn_dropout=0.1):
|
|
super().__init__()
|
|
self.temperature = temperature
|
|
self.dropout = nn.Dropout(attn_dropout)
|
|
|
|
def forward(self, q, k, v, mask=None):
|
|
|
|
attn = torch.matmul(q / self.temperature, k.transpose(2, 3))
|
|
|
|
if mask is not None:
|
|
attn = attn.masked_fill(mask == 0, -1e9)
|
|
|
|
attn = self.dropout(F.softmax(attn, dim=-1))
|
|
output = torch.matmul(attn, v)
|
|
|
|
return output, attn
|
|
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
''' Multi-Head Attention module '''
|
|
|
|
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
|
|
super().__init__()
|
|
|
|
self.n_head = n_head
|
|
self.d_k = d_k
|
|
self.d_v = d_v
|
|
|
|
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
|
|
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
|
|
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
|
|
self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
|
|
|
|
self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)
|
|
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
|
|
|
|
|
|
def forward(self, q, k, v, mask=None):
|
|
|
|
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
|
|
sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)
|
|
|
|
residual = q
|
|
|
|
|
|
|
|
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
|
|
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
|
|
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
|
|
|
|
|
|
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
|
|
|
|
if mask is not None:
|
|
mask = mask.unsqueeze(1)
|
|
|
|
q, attn = self.attention(q, k, v, mask=mask)
|
|
|
|
|
|
|
|
q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
|
|
q = self.dropout(self.fc(q))
|
|
q += residual
|
|
|
|
q = self.layer_norm(q)
|
|
|
|
return q, attn
|
|
|
|
|
|
class PositionwiseFeedForward(nn.Module):
|
|
''' A two-feed-forward-layer module '''
|
|
|
|
def __init__(self, d_in, d_hid, dropout=0.1):
|
|
super().__init__()
|
|
self.w_1 = nn.Linear(d_in, d_hid)
|
|
self.w_2 = nn.Linear(d_hid, d_in)
|
|
self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
def forward(self, x):
|
|
|
|
residual = x
|
|
|
|
x = self.w_2(F.relu(self.w_1(x)))
|
|
x = self.dropout(x)
|
|
x += residual
|
|
|
|
x = self.layer_norm(x)
|
|
|
|
return x
|
|
|
|
|
|
def get_subsequent_mask(seq):
|
|
''' For masking out the subsequent info. '''
|
|
sz_b, len_s = seq.size()
|
|
subsequent_mask = (1 - torch.triu(
|
|
torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool()
|
|
return subsequent_mask
|
|
|
|
|
|
class PositionalEncoding(nn.Module):
|
|
|
|
def __init__(self, d_hid, n_position=200):
|
|
super(PositionalEncoding, self).__init__()
|
|
|
|
|
|
self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))
|
|
|
|
def _get_sinusoid_encoding_table(self, n_position, d_hid):
|
|
''' Sinusoid position encoding table '''
|
|
|
|
|
|
def get_position_angle_vec(position):
|
|
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
|
|
|
|
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
|
|
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])
|
|
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])
|
|
|
|
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
|
|
|
|
def forward(self, x):
|
|
return x + self.pos_table[:, :x.size(1)].clone().detach()
|
|
|
|
|
|
class EncoderLayer(nn.Module):
|
|
''' Compose with two layers '''
|
|
|
|
def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.0):
|
|
super(EncoderLayer, self).__init__()
|
|
self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
|
|
self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)
|
|
|
|
def forward(self, enc_input, slf_attn_mask=None):
|
|
enc_output, enc_slf_attn = self.slf_attn(
|
|
enc_input, enc_input, enc_input, mask=slf_attn_mask)
|
|
enc_output = self.pos_ffn(enc_output)
|
|
return enc_output, enc_slf_attn
|
|
|
|
|
|
class TransformerEncoder(nn.Module):
|
|
''' A encoder model with self attention mechanism. '''
|
|
|
|
def __init__(
|
|
self, d_word_vec=512, n_layers=2, n_head=8, d_k=64, d_v=64,
|
|
d_model=512, d_inner=2048, dropout=0.1, n_position=624, scale_emb=False):
|
|
|
|
super().__init__()
|
|
|
|
|
|
if n_position > 0:
|
|
self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position)
|
|
else:
|
|
self.position_enc = lambda x: x
|
|
self.dropout = nn.Dropout(p=dropout)
|
|
self.layer_stack = nn.ModuleList([
|
|
EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
|
|
for _ in range(n_layers)])
|
|
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
|
|
self.scale_emb = scale_emb
|
|
self.d_model = d_model
|
|
|
|
def forward(self, src_seq, src_mask, return_attns=False):
|
|
|
|
enc_slf_attn_list = []
|
|
|
|
|
|
|
|
enc_output = src_seq
|
|
if self.scale_emb:
|
|
enc_output *= self.d_model ** 0.5
|
|
enc_output = self.dropout(self.position_enc(enc_output))
|
|
enc_output = self.layer_norm(enc_output)
|
|
|
|
for enc_layer in self.layer_stack:
|
|
enc_output, enc_slf_attn = enc_layer(enc_output, slf_attn_mask=src_mask)
|
|
enc_slf_attn_list += [enc_slf_attn] if return_attns else []
|
|
|
|
if return_attns:
|
|
return enc_output, enc_slf_attn_list
|
|
return enc_output
|
|
|
|
|
|
|
|
|
|
|
|
def padding(x, D, K, S):
|
|
"""padding zeroes to x so that denoised audio has the same length"""
|
|
|
|
L = x.shape[-1]
|
|
for _ in range(D):
|
|
if L < K:
|
|
L = 1
|
|
else:
|
|
L = 1 + np.ceil((L - K) / S)
|
|
|
|
for _ in range(D):
|
|
L = (L - 1) * S + K
|
|
|
|
L = int(L)
|
|
x = F.pad(x, (0, L - x.shape[-1]))
|
|
return x
|
|
|
|
|
|
class DenoisingModel(nn.Module):
|
|
""" CleanUNet architecture. """
|
|
|
|
def __init__(self, channels_input=1, channels_output=1,
|
|
channels_H=64, max_H=768,
|
|
encoder_n_layers=8, kernel_size=4, stride=2,
|
|
tsfm_n_layers=3,
|
|
tsfm_n_head=8,
|
|
tsfm_d_model=512,
|
|
tsfm_d_inner=2048):
|
|
|
|
"""
|
|
Parameters:
|
|
channels_input (int): input channels
|
|
channels_output (int): output channels
|
|
channels_H (int): middle channels H that controls capacity
|
|
max_H (int): maximum H
|
|
encoder_n_layers (int): number of encoder/decoder layers D
|
|
kernel_size (int): kernel size K
|
|
stride (int): stride S
|
|
tsfm_n_layers (int): number of self attention blocks N
|
|
tsfm_n_head (int): number of heads in each self attention block
|
|
tsfm_d_model (int): d_model of self attention
|
|
tsfm_d_inner (int): d_inner of self attention
|
|
"""
|
|
|
|
super(DenoisingModel, self).__init__()
|
|
|
|
self.channels_input = channels_input
|
|
self.channels_output = channels_output
|
|
self.channels_H = channels_H
|
|
self.max_H = max_H
|
|
self.encoder_n_layers = encoder_n_layers
|
|
self.kernel_size = kernel_size
|
|
self.stride = stride
|
|
|
|
self.tsfm_n_layers = tsfm_n_layers
|
|
self.tsfm_n_head = tsfm_n_head
|
|
self.tsfm_d_model = tsfm_d_model
|
|
self.tsfm_d_inner = tsfm_d_inner
|
|
|
|
|
|
self.encoder = nn.ModuleList()
|
|
self.decoder = nn.ModuleList()
|
|
|
|
for i in range(encoder_n_layers):
|
|
self.encoder.append(nn.Sequential(
|
|
nn.Conv1d(channels_input, channels_H, kernel_size, stride),
|
|
nn.ReLU(),
|
|
nn.Conv1d(channels_H, channels_H * 2, 1),
|
|
nn.GLU(dim=1)
|
|
))
|
|
channels_input = channels_H
|
|
|
|
if i == 0:
|
|
|
|
self.decoder.append(nn.Sequential(
|
|
nn.Conv1d(channels_H, channels_H * 2, 1),
|
|
nn.GLU(dim=1),
|
|
nn.ConvTranspose1d(channels_H, channels_output, kernel_size, stride)
|
|
))
|
|
else:
|
|
self.decoder.insert(0, nn.Sequential(
|
|
nn.Conv1d(channels_H, channels_H * 2, 1),
|
|
nn.GLU(dim=1),
|
|
nn.ConvTranspose1d(channels_H, channels_output, kernel_size, stride),
|
|
nn.ReLU()
|
|
))
|
|
channels_output = channels_H
|
|
|
|
|
|
channels_H *= 2
|
|
channels_H = min(channels_H, max_H)
|
|
|
|
|
|
self.tsfm_conv1 = nn.Conv1d(channels_output, tsfm_d_model, kernel_size=1)
|
|
self.tsfm_encoder = TransformerEncoder(d_word_vec=tsfm_d_model,
|
|
n_layers=tsfm_n_layers,
|
|
n_head=tsfm_n_head,
|
|
d_k=tsfm_d_model // tsfm_n_head,
|
|
d_v=tsfm_d_model // tsfm_n_head,
|
|
d_model=tsfm_d_model,
|
|
d_inner=tsfm_d_inner,
|
|
dropout=0.0,
|
|
n_position=0,
|
|
scale_emb=False)
|
|
self.tsfm_conv2 = nn.Conv1d(tsfm_d_model, channels_output, kernel_size=1)
|
|
|
|
|
|
for layer in self.modules():
|
|
if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)):
|
|
weight_scaling_init(layer)
|
|
|
|
def forward(self, noisy_audio):
|
|
|
|
if len(noisy_audio.shape) == 2:
|
|
noisy_audio = noisy_audio.unsqueeze(1)
|
|
B, C, L = noisy_audio.shape
|
|
assert C == 1
|
|
|
|
|
|
std = noisy_audio.std(dim=2, keepdim=True) + 1e-3
|
|
noisy_audio /= std
|
|
x = padding(noisy_audio, self.encoder_n_layers, self.kernel_size, self.stride)
|
|
|
|
|
|
skip_connections = []
|
|
for downsampling_block in self.encoder:
|
|
x = downsampling_block(x)
|
|
skip_connections.append(x)
|
|
skip_connections = skip_connections[::-1]
|
|
|
|
|
|
len_s = x.shape[-1]
|
|
attn_mask = (1 - torch.triu(torch.ones((1, len_s, len_s), device=x.device), diagonal=1)).bool()
|
|
|
|
x = self.tsfm_conv1(x)
|
|
x = x.permute(0, 2, 1)
|
|
x = self.tsfm_encoder(x, src_mask=attn_mask)
|
|
x = x.permute(0, 2, 1)
|
|
x = self.tsfm_conv2(x)
|
|
|
|
|
|
for i, upsampling_block in enumerate(self.decoder):
|
|
skip_i = skip_connections[i]
|
|
x += skip_i[:, :, :x.shape[-1]]
|
|
x = upsampling_block(x)
|
|
|
|
x = x[:, :, :L] * std
|
|
return x
|
|
|
|
|
|
if __name__ == '__main__':
|
|
import json
|
|
import argparse
|
|
import os
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-c', '--config', type=str, default='configs/DNS-large-full.json',
|
|
help='JSON file for configuration')
|
|
args = parser.parse_args()
|
|
|
|
with open(args.config) as f:
|
|
data = f.read()
|
|
config = json.loads(data)
|
|
network_config = config["network_config"]
|
|
|
|
model = CleanUNet(**network_config).cuda()
|
|
from util import print_size
|
|
print_size(model, keyword="tsfm")
|
|
|
|
input_data = torch.ones([4,1,int(4.5*16000)]).cuda()
|
|
output = model(input_data)
|
|
print(output.shape)
|
|
|
|
y = torch.rand([4,1,int(4.5*16000)]).cuda()
|
|
loss = torch.nn.MSELoss()(y, output)
|
|
loss.backward()
|
|
print(loss.item())
|
|
|