|
import os
|
|
import time
|
|
import functools
|
|
import numpy as np
|
|
from math import cos, pi, floor, sin
|
|
from tqdm import tqdm
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
def flatten(v):
|
|
return [x for y in v for x in y]
|
|
|
|
|
|
def rescale(x):
|
|
return (x - x.min()) / (x.max() - x.min())
|
|
|
|
|
|
def find_max_epoch(path):
|
|
"""
|
|
Find latest checkpoint
|
|
|
|
Returns:
|
|
maximum iteration, -1 if there is no (valid) checkpoint
|
|
"""
|
|
|
|
files = os.listdir(path)
|
|
epoch = -1
|
|
for f in files:
|
|
if len(f) <= 4:
|
|
continue
|
|
if f[-4:] == '.pkl':
|
|
number = f[:-4]
|
|
try:
|
|
epoch = max(epoch, int(number))
|
|
except:
|
|
continue
|
|
return epoch
|
|
|
|
|
|
def print_size(net, keyword=None):
|
|
"""
|
|
Print the number of parameters of a network
|
|
"""
|
|
|
|
if net is not None and isinstance(net, torch.nn.Module):
|
|
module_parameters = filter(lambda p: p.requires_grad, net.parameters())
|
|
params = sum([np.prod(p.size()) for p in module_parameters])
|
|
|
|
print("{} Parameters: {:.6f}M".format(
|
|
net.__class__.__name__, params / 1e6), flush=True, end="; ")
|
|
|
|
if keyword is not None:
|
|
keyword_parameters = [p for name, p in net.named_parameters() if p.requires_grad and keyword in name]
|
|
params = sum([np.prod(p.size()) for p in keyword_parameters])
|
|
print("{} Parameters: {:.6f}M".format(
|
|
keyword, params / 1e6), flush=True, end="; ")
|
|
|
|
print(" ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def anneal_linear(start, end, proportion):
|
|
return start + proportion * (end - start)
|
|
|
|
|
|
def anneal_cosine(start, end, proportion):
|
|
cos_val = cos(pi * proportion) + 1
|
|
return end + (start - end) / 2 * cos_val
|
|
|
|
|
|
class Phase:
|
|
def __init__(self, start, end, n_iter, cur_iter, anneal_fn):
|
|
self.start, self.end = start, end
|
|
self.n_iter = n_iter
|
|
self.anneal_fn = anneal_fn
|
|
self.n = cur_iter
|
|
|
|
def step(self):
|
|
self.n += 1
|
|
|
|
return self.anneal_fn(self.start, self.end, self.n / self.n_iter)
|
|
|
|
def reset(self):
|
|
self.n = 0
|
|
|
|
@property
|
|
def is_done(self):
|
|
return self.n >= self.n_iter
|
|
|
|
|
|
class LinearWarmupCosineDecay:
|
|
def __init__(
|
|
self,
|
|
optimizer,
|
|
lr_max,
|
|
n_iter,
|
|
iteration=0,
|
|
divider=25,
|
|
warmup_proportion=0.3,
|
|
phase=('linear', 'cosine'),
|
|
):
|
|
self.optimizer = optimizer
|
|
|
|
phase1 = int(n_iter * warmup_proportion)
|
|
phase2 = n_iter - phase1
|
|
lr_min = lr_max / divider
|
|
|
|
phase_map = {'linear': anneal_linear, 'cosine': anneal_cosine}
|
|
|
|
cur_iter_phase1 = iteration
|
|
cur_iter_phase2 = max(0, iteration - phase1)
|
|
self.lr_phase = [
|
|
Phase(lr_min, lr_max, phase1, cur_iter_phase1, phase_map[phase[0]]),
|
|
Phase(lr_max, lr_min / 1e4, phase2, cur_iter_phase2, phase_map[phase[1]]),
|
|
]
|
|
|
|
if iteration < phase1:
|
|
self.phase = 0
|
|
else:
|
|
self.phase = 1
|
|
|
|
def step(self):
|
|
lr = self.lr_phase[self.phase].step()
|
|
|
|
for group in self.optimizer.param_groups:
|
|
group['lr'] = lr
|
|
|
|
if self.lr_phase[self.phase].is_done:
|
|
self.phase += 1
|
|
|
|
if self.phase >= len(self.lr_phase):
|
|
for phase in self.lr_phase:
|
|
phase.reset()
|
|
|
|
self.phase = 0
|
|
|
|
return lr
|
|
|
|
|
|
|
|
|
|
def std_normal(size):
|
|
"""
|
|
Generate the standard Gaussian variable of a certain size
|
|
"""
|
|
|
|
return torch.normal(0, 1, size=size).cuda()
|
|
|
|
|
|
def weight_scaling_init(layer):
|
|
"""
|
|
weight rescaling initialization from https://arxiv.org/abs/1911.13254
|
|
"""
|
|
w = layer.weight.detach()
|
|
alpha = 10.0 * w.std()
|
|
layer.weight.data /= torch.sqrt(alpha)
|
|
layer.bias.data /= torch.sqrt(alpha)
|
|
|
|
|
|
@torch.no_grad()
|
|
def sampling(net, noisy_audio):
|
|
"""
|
|
Perform denoising (forward) step
|
|
"""
|
|
|
|
return net(noisy_audio)
|
|
|
|
|
|
def loss_fn(net, X, ell_p, ell_p_lambda, stft_lambda, mrstftloss, **kwargs):
|
|
"""
|
|
Loss function in CleanUNet
|
|
|
|
Parameters:
|
|
net: network
|
|
X: training data pair (clean audio, noisy_audio)
|
|
ell_p: \ell_p norm (1 or 2) of the AE loss
|
|
ell_p_lambda: factor of the AE loss
|
|
stft_lambda: factor of the STFT loss
|
|
mrstftloss: multi-resolution STFT loss function
|
|
|
|
Returns:
|
|
loss: value of objective function
|
|
output_dic: values of each component of loss
|
|
"""
|
|
|
|
assert type(X) == tuple and len(X) == 2
|
|
|
|
clean_audio, noisy_audio = X
|
|
B, C, L = clean_audio.shape
|
|
output_dic = {}
|
|
loss = 0.0
|
|
|
|
|
|
denoised_audio = net(noisy_audio)
|
|
|
|
if ell_p == 2:
|
|
ae_loss = nn.MSELoss()(denoised_audio, clean_audio)
|
|
elif ell_p == 1:
|
|
ae_loss = F.l1_loss(denoised_audio, clean_audio)
|
|
else:
|
|
raise NotImplementedError
|
|
loss += ae_loss * ell_p_lambda
|
|
output_dic["reconstruct"] = ae_loss.data * ell_p_lambda
|
|
|
|
if stft_lambda > 0:
|
|
sc_loss, mag_loss = mrstftloss(denoised_audio.squeeze(1), clean_audio.squeeze(1))
|
|
loss += (sc_loss + mag_loss) * stft_lambda
|
|
output_dic["stft_sc"] = sc_loss.data * stft_lambda
|
|
output_dic["stft_mag"] = mag_loss.data * stft_lambda
|
|
|
|
return loss, output_dic
|
|
|