File size: 2,954 Bytes
f494b68
12a86ab
 
 
 
 
 
 
f494b68
12a86ab
 
f494b68
12a86ab
 
 
03486e0
12a86ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image
from PIL import Image
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
import os

# Load the trained model
model = tf.keras.models.load_model("my_keras_model.h5")

# Function to process X-rays and generate a PDF report
def generate_report(name, age, gender, xray1, xray2):
    image_size = (224, 224)

    def predict_fracture(xray):
        img = Image.open(xray).resize(image_size)
        img_array = image.img_to_array(img) / 255.0
        img_array = np.expand_dims(img_array, axis=0)
        prediction = model.predict(img_array)[0][0]
        return prediction

    # Predict on both X-rays
    prediction1 = predict_fracture(xray1)
    prediction2 = predict_fracture(xray2)
    avg_prediction = (prediction1 + prediction2) / 2
    diagnosed_class = "Fractured" if avg_prediction > 0.5 else "Normal"

    # Injury severity classification
    severity = "Mild" if avg_prediction < 0.3 else "Moderate" if avg_prediction < 0.7 else "Severe"
    treatment = {
        "Mild": "Rest, pain relievers, follow-up X-ray.",
        "Moderate": "Plaster cast, possible minor surgery.",
        "Severe": "Major surgery, metal implants, physiotherapy."
    }[severity]
    gov_cost = {"Mild": "₹2,000 - ₹5,000", "Moderate": "₹8,000 - ₹15,000", "Severe": "₹20,000 - ₹50,000"}[severity]
    private_cost = {"Mild": "₹10,000 - ₹20,000", "Moderate": "₹30,000 - ₹60,000", "Severe": "₹1,00,000+"}[severity]

    # Generate PDF report
    report_path = f"{name}_fracture_report.pdf"
    c = canvas.Canvas(report_path, pagesize=letter)
    c.setFont("Helvetica", 12)
    c.drawString(100, 750, f"Patient Name: {name}")
    c.drawString(100, 730, f"Age: {age}")
    c.drawString(100, 710, f"Gender: {gender}")
    c.drawString(100, 690, f"Diagnosis: {diagnosed_class}")
    c.drawString(100, 670, f"Injury Severity: {severity}")
    c.drawString(100, 650, f"Recommended Treatment: {treatment}")
    c.drawString(100, 630, f"Estimated Cost (Govt Hospital): {gov_cost}")
    c.drawString(100, 610, f"Estimated Cost (Private Hospital): {private_cost}")
    c.save()

    return report_path  # Return path for auto-download

# Define Gradio Interface
interface = gr.Interface(
    fn=generate_report,
    inputs=[
        gr.Textbox(label="Patient Name"),
        gr.Number(label="Age"),
        gr.Radio(["Male", "Female", "Other"], label="Gender"),
        gr.Image(type="file", label="Upload X-ray Image 1"),
        gr.Image(type="file", label="Upload X-ray Image 2"),
    ],
    outputs=gr.File(label="Download Report"),
    title="Bone Fracture Detection & Medical Report",
    description="Enter patient details, upload two X-ray images, and generate a detailed medical report with treatment suggestions and cost estimates."
)

# Launch the Gradio app
if __name__ == "__main__":
    interface.launch()