File size: 5,851 Bytes
37c3266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"  # Force TensorFlow to use CPU

import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image
from PIL import Image
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib import colors
from reportlab.platypus import Table, TableStyle

# Load the trained model
model = tf.keras.models.load_model("my_keras_model.h5")

# Read HTML content from `re.html`
with open("templates/re.html", "r", encoding="utf-8") as file:
    html_content = file.read()

# List of sample images
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]

# Function to process X-ray and generate a PDF report
def generate_report(name, age, gender, weight, height, allergies, cause, xray):
    image_size = (224, 224)

    def predict_fracture(xray_path):
        img = Image.open(xray_path).resize(image_size)
        img_array = image.img_to_array(img) / 255.0
        img_array = np.expand_dims(img_array, axis=0)
        prediction = model.predict(img_array)[0][0]
        return prediction

    # Predict fracture
    prediction = predict_fracture(xray)
    diagnosed_class = "normal" if prediction > 0.5 else "Fractured"

    # Injury severity classification
    severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"

    # Treatment details table
    treatment_data = [
        ["Severity Level", "Recommended Treatment", "Recovery Duration"],
        ["Mild", "Rest, pain relievers, and follow-up X-ray", "4-6 weeks"],
        ["Moderate", "Plaster cast, minor surgery if needed", "6-10 weeks"],
        ["Severe", "Major surgery, metal implants, physiotherapy", "Several months"]
    ]

    # Estimated cost & duration table
    cost_duration_data = [
        ["Hospital Type", "Estimated Cost", "Recovery Time"],
        ["Government Hospital", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"],
        ["Private Hospital", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"]
    ]

    # Save X-ray image for report
    img = Image.open(xray).resize((300, 300))
    img_path = f"{name}_xray.png"
    img.save(img_path)

    # Generate PDF report
    report_path = f"{name}_fracture_report.pdf"
    c = canvas.Canvas(report_path, pagesize=letter)
    
    # Report title
    c.setFont("Helvetica-Bold", 16)
    c.drawString(200, 770, "Bone Fracture Detection Report")

    # Patient details table
    patient_data = [
        ["Patient Name", name],
        ["Age", age],
        ["Gender", gender],
        ["Weight", f"{weight} kg"],
        ["Height", f"{height} cm"],
        ["Allergies", allergies if allergies else "None"],
        ["Cause of Injury", cause if cause else "Not Provided"],
        ["Diagnosis", diagnosed_class],
        ["Injury Severity", severity]
    ]

    # Format and align tables
    def format_table(data):
        table = Table(data, colWidths=[270, 270])  # Set 90% width
        table.setStyle(TableStyle([
            ('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
            ('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
            ('ALIGN', (0, 0), (-1, -1), 'CENTER'),
            ('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
            ('BOTTOMPADDING', (0, 0), (-1, 0), 12),
            ('GRID', (0, 0), (-1, -1), 1, colors.black),
            ('VALIGN', (0, 0), (-1, -1), 'MIDDLE')
        ]))
        return table

    # Draw patient details table
    patient_table = format_table(patient_data)
    patient_table.wrapOn(c, 480, 500)
    patient_table.drawOn(c, 50, 620)

    # Load and insert X-ray image
    c.drawInlineImage(img_path, 50, 320, width=250, height=250)
    c.setFont("Helvetica-Bold", 12)
    c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")

    # Draw treatment and cost tables
    treatment_table = format_table(treatment_data)
    treatment_table.wrapOn(c, 480, 200)
    treatment_table.drawOn(c, 50, 200)

    cost_table = format_table(cost_duration_data)
    cost_table.wrapOn(c, 480, 150)
    cost_table.drawOn(c, 50, 80)

    c.save()

    return report_path  # Return path for auto-download

# Function to select a sample image
def use_sample_image(sample_image_path):
    return sample_image_path  # Returns selected sample image filepath

# Define Gradio Interface
with gr.Blocks() as app:
    gr.HTML(html_content)  # Display `re.html` content in Gradio
    gr.Markdown("## Bone Fracture Detection System")
    
    with gr.Row():
        name = gr.Textbox(label="Patient Name")
        age = gr.Number(label="Age")
        gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
    
    with gr.Row():
        weight = gr.Number(label="Weight (kg)")
        height = gr.Number(label="Height (cm)")
    
    with gr.Row():
        allergies = gr.Textbox(label="Allergies (if any)")
        cause = gr.Textbox(label="Cause of Injury")

    with gr.Row():
        xray = gr.Image(type="filepath", label="Upload X-ray Image")
    
    with gr.Row():
        sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
        select_button = gr.Button("Load Sample Image")

    submit_button = gr.Button("Generate Report")
    output_file = gr.File(label="Download Report")

    select_button.click(use_sample_image, inputs=[sample_selector], outputs=[xray])

    submit_button.click(
        generate_report,
        inputs=[name, age, gender, weight, height, allergies, cause, xray],
        outputs=[output_file],
    )

# Launch the Gradio app
if __name__ == "__main__":
    app.launch()