File size: 4,311 Bytes
f2ca99e 0a42e87 752f355 434ed8b f2ca99e 752f355 e1eb8aa f2ca99e 752f355 e1eb8aa 752f355 e1eb8aa 0a42e87 752f355 0a42e87 752f355 0a42e87 752f355 0a42e87 29c4191 e1eb8aa 41658fe e1eb8aa f2ca99e 434ed8b f2ca99e 752f355 f2ca99e 434ed8b e1eb8aa f2ca99e 752f355 e1eb8aa f2ca99e 752f355 f2ca99e 29c4191 f2ca99e 29c4191 f2ca99e 434ed8b 0a42e87 752f355 434ed8b f2ca99e 434ed8b f2ca99e 434ed8b e1eb8aa 434ed8b e1eb8aa 41658fe 752f355 f2ca99e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import os
import smtplib
import ssl
from email.message import EmailMessage
# Force TensorFlow to use CPU
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image
from PIL import Image
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
# Load the trained model
model = tf.keras.models.load_model("my_keras_model.h5")
# Store generated report paths
report_paths = {}
# Function to send email
def send_email(patient_email, patient_name):
if patient_name not in report_paths or not os.path.exists(report_paths[patient_name]):
return "Error: Generate the report first before sending."
report_path = report_paths[patient_name]
sender_email = "[email protected]"
sender_password = "your_email_password"
subject = f"Bone Fracture Report for {patient_name}"
body = f"Dear {patient_name},\n\nYour bone fracture diagnosis report is attached.\n\nBest Regards,\nHospital Team"
msg = EmailMessage()
msg["From"] = sender_email
msg["To"] = patient_email
msg["Subject"] = subject
msg.set_content(body)
# Attach PDF
with open(report_path, "rb") as file:
msg.add_attachment(file.read(), maintype="application", subtype="pdf", filename=os.path.basename(report_path))
# Send email securely
context = ssl.create_default_context()
with smtplib.SMTP_SSL("smtp.gmail.com", 465, context=context) as server:
server.login(sender_email, sender_password)
server.send_message(msg)
return f"Report sent successfully to {patient_email}!"
# Function to generate report
def generate_report(name, age, gender, weight, height, allergies, cause, xray):
if not name:
return "Error: Please enter a patient name."
image_size = (224, 224)
def predict_fracture(xray_path):
img = Image.open(xray_path).resize(image_size)
img_array = image.img_to_array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0)
prediction = model.predict(img_array)[0][0]
return prediction
# Predict fracture
prediction = predict_fracture(xray)
diagnosed_class = "Normal" if prediction > 0.5 else "Fractured"
# Generate PDF
report_path = f"{name}_fracture_report.pdf"
c = canvas.Canvas(report_path, pagesize=letter)
c.setFont("Helvetica-Bold", 16)
c.drawString(200, 770, "Bone Fracture Detection Report")
c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")
# Save X-ray image for report
img = Image.open(xray).resize((300, 300))
img_path = f"{name}_xray.png"
img.save(img_path)
c.drawInlineImage(img_path, 50, 320, width=250, height=250)
c.save()
# Store file path for sending email
report_paths[name] = report_path
return report_path # Return file path
# Gradio Interface
with gr.Blocks() as app:
gr.Markdown("## Bone Fracture Detection System")
with gr.Row():
name = gr.Textbox(label="Patient Name")
age = gr.Number(label="Age")
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
with gr.Row():
weight = gr.Number(label="Weight (kg)")
height = gr.Number(label="Height (cm)")
with gr.Row():
allergies = gr.Textbox(label="Allergies")
cause = gr.Textbox(label="Cause of Injury")
with gr.Row():
email = gr.Textbox(label="Patient Email", type="email")
# Preloaded X-ray image
default_xray_path = "default_xray.png" # Ensure this file exists in your project
xray = gr.Image(type="filepath", label="Upload X-ray Image", value=default_xray_path)
with gr.Row():
submit_button = gr.Button("Generate Report")
send_email_button = gr.Button("Send Report via Email")
output_file = gr.File(label="Download Report")
# Generate Report Button
submit_button.click(
generate_report,
inputs=[name, age, gender, weight, height, allergies, cause, xray],
outputs=[output_file]
)
# Send Email Button
send_email_button.click(
send_email,
inputs=[email, name],
outputs=[gr.Textbox(label="Status")]
)
# Launch app
if __name__ == "__main__":
app.launch() |