ftx7go's picture
Update app.py
a41e479 verified
raw
history blame
6.81 kB
import os
import smtplib
import gradio as gr
import tensorflow as tf
import numpy as np
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.mime.base import MIMEBase
from email import encoders
from tensorflow.keras.preprocessing import image
from PIL import Image
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from reportlab.lib import colors
from reportlab.platypus import Table, TableStyle
# Ensure the "reports" directory exists
if not os.path.exists("reports"):
os.makedirs("reports")
# Load the trained model
model = tf.keras.models.load_model("my_keras_model.h5")
# Read HTML content from `re.html`
with open("templates/re.html", "r", encoding="utf-8") as file:
html_content = file.read()
# List of sample images
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
# Function to generate and save the report
def generate_report(name, age, gender, weight, height, allergies, cause, xray):
image_size = (224, 224)
def predict_fracture(xray_path):
img = Image.open(xray_path).resize(image_size)
img_array = image.img_to_array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0)
prediction = model.predict(img_array)[0][0]
return prediction
# Predict fracture
prediction = predict_fracture(xray)
diagnosed_class = "normal" if prediction > 0.5 else "Fractured"
# Injury severity classification
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
# Treatment details table
treatment_data = [
["Severity Level", "Recommended Treatment", "Recovery Duration"],
["Mild", "Rest, pain relievers, and follow-up X-ray", "4-6 weeks"],
["Moderate", "Plaster cast, minor surgery if needed", "6-10 weeks"],
["Severe", "Major surgery, metal implants, physiotherapy", "Several months"]
]
# Estimated cost & duration table
cost_duration_data = [
["Hospital Type", "Estimated Cost", "Recovery Time"],
["Government Hospital", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"],
["Private Hospital", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"]
]
# Save X-ray image for report
img = Image.open(xray).resize((300, 300))
img_path = f"reports/{name}_xray.png"
img.save(img_path)
# Generate PDF report
report_path = f"reports/{name}_fracture_report.pdf"
c = canvas.Canvas(report_path, pagesize=letter)
# Report title
c.setFont("Helvetica-Bold", 16)
c.drawString(200, 770, "Bone Fracture Detection Report")
# Patient details table
patient_data = [
["Patient Name", name],
["Age", age],
["Gender", gender],
["Weight", f"{weight} kg"],
["Height", f"{height} cm"],
["Allergies", allergies if allergies else "None"],
["Cause of Injury", cause if cause else "Not Provided"],
["Diagnosis", diagnosed_class],
["Injury Severity", severity]
]
# Format and align tables
def format_table(data):
table = Table(data, colWidths=[270, 270])
table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('GRID', (0, 0), (-1, -1), 1, colors.black),
('VALIGN', (0, 0), (-1, -1), 'MIDDLE')
]))
return table
# Draw tables and images
patient_table = format_table(patient_data)
patient_table.wrapOn(c, 480, 500)
patient_table.drawOn(c, 50, 620)
c.drawInlineImage(img_path, 50, 320, width=250, height=250)
c.setFont("Helvetica-Bold", 12)
c.drawString(120, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")
treatment_table = format_table(treatment_data)
treatment_table.wrapOn(c, 480, 200)
treatment_table.drawOn(c, 50, 200)
cost_table = format_table(cost_duration_data)
cost_table.wrapOn(c, 480, 150)
cost_table.drawOn(c, 50, 80)
c.save()
return report_path # Return path for auto-download
# Function to send email with attachment
def send_email(patient_email, report_path):
sender_email = "[email protected]"
sender_password = "your_email_password"
subject = "Bone Fracture Detection Report"
body = "Attached is your bone fracture detection report."
msg = MIMEMultipart()
msg["From"] = sender_email
msg["To"] = patient_email
msg["Subject"] = subject
msg.attach(MIMEText(body, "plain"))
with open(report_path, "rb") as attachment:
part = MIMEBase("application", "octet-stream")
part.set_payload(attachment.read())
encoders.encode_base64(part)
part.add_header("Content-Disposition", f"attachment; filename={os.path.basename(report_path)}")
msg.attach(part)
try:
server = smtplib.SMTP("smtp.gmail.com", 587)
server.starttls()
server.login(sender_email, sender_password)
server.sendmail(sender_email, patient_email, msg.as_string())
server.quit()
return "Email Sent Successfully!"
except Exception as e:
return f"Error sending email: {str(e)}"
# Define Gradio Interface
with gr.Blocks() as app:
gr.HTML(html_content)
gr.Markdown("## Bone Fracture Detection System")
with gr.Row():
name = gr.Textbox(label="Patient Name")
age = gr.Number(label="Age")
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
patient_email = gr.Textbox(label="Patient Email")
with gr.Row():
weight = gr.Number(label="Weight (kg)")
height = gr.Number(label="Height (cm)")
with gr.Row():
allergies = gr.Textbox(label="Allergies")
cause = gr.Textbox(label="Cause of Injury")
xray = gr.Image(type="filepath", label="Upload X-ray Image")
generate_button = gr.Button("Generate & Download Report")
send_email_button = gr.Button("Send Report via Email")
output_file = gr.File(label="Download Report")
status = gr.Textbox(label="Email Status", interactive=False)
generate_button.click(generate_report, inputs=[name, age, gender, weight, height, allergies, cause, xray], outputs=[output_file])
send_email_button.click(send_email, inputs=[patient_email, output_file], outputs=[status])
if __name__ == "__main__":
app.launch()