Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
|
|
|
4 |
import gradio as gr
|
5 |
import tensorflow as tf
|
6 |
import numpy as np
|
@@ -18,7 +19,13 @@ model = tf.keras.models.load_model("my_keras_model.h5")
|
|
18 |
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
|
19 |
|
20 |
# Function to process X-ray and generate a PDF report
|
21 |
-
def generate_report(name, age, gender, weight, height, address,
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
image_size = (224, 224)
|
23 |
|
24 |
def predict_fracture(xray_path):
|
@@ -28,53 +35,49 @@ def generate_report(name, age, gender, weight, height, address, parent_name, all
|
|
28 |
prediction = model.predict(img_array)[0][0]
|
29 |
return prediction
|
30 |
|
31 |
-
# Predict fracture
|
32 |
prediction = predict_fracture(xray)
|
33 |
diagnosed_class = "Normal" if prediction > 0.5 else "Fractured"
|
34 |
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
# Save X-ray image for report
|
42 |
img = Image.open(xray).resize((300, 300))
|
43 |
img_path = f"{name}_xray.png"
|
44 |
img.save(img_path)
|
45 |
|
46 |
-
# Generate PDF report
|
47 |
report_path = f"{name}_fracture_report.pdf"
|
48 |
c = canvas.Canvas(report_path, pagesize=letter)
|
49 |
-
|
50 |
-
# Set page margins
|
51 |
-
c.translate(20, 20)
|
52 |
-
|
53 |
-
# Report title
|
54 |
c.setFont("Helvetica-Bold", 16)
|
55 |
-
c.drawString(
|
56 |
-
c.setFont("Helvetica", 12)
|
57 |
-
c.drawString(140, 735, hospital_address)
|
58 |
-
c.drawString(180, 720, f"Attending Doctor: {doctor_name}")
|
59 |
|
60 |
-
# Patient details
|
61 |
patient_data = [
|
62 |
-
["Patient Name", name
|
63 |
["Age", age],
|
64 |
["Gender", gender],
|
65 |
-
["Parent's Name", parent_name[:50]],
|
66 |
-
["Address", address[:70]],
|
67 |
["Weight", f"{weight} kg"],
|
68 |
["Height", f"{height} cm"],
|
69 |
-
["
|
70 |
-
["
|
|
|
|
|
71 |
["Diagnosis", diagnosed_class],
|
72 |
["Injury Severity", severity]
|
73 |
]
|
74 |
|
75 |
-
# Format and align tables
|
76 |
def format_table(data):
|
77 |
-
table = Table(data, colWidths=[
|
78 |
table.setStyle(TableStyle([
|
79 |
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
|
80 |
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
|
@@ -86,83 +89,80 @@ def generate_report(name, age, gender, weight, height, address, parent_name, all
|
|
86 |
]))
|
87 |
return table
|
88 |
|
89 |
-
# Draw patient details table
|
90 |
patient_table = format_table(patient_data)
|
91 |
-
patient_table.wrapOn(c,
|
92 |
patient_table.drawOn(c, 50, 620)
|
93 |
|
94 |
-
|
95 |
-
c.drawInlineImage(img_path, 50, 350, width=250, height=250)
|
96 |
c.setFont("Helvetica-Bold", 12)
|
97 |
-
c.drawString(
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
c.setFont("Helvetica", 12)
|
103 |
-
c.drawString(50, 250, "• Immobilization and pain management")
|
104 |
-
c.drawString(50, 235, "• Follow-up X-rays required")
|
105 |
-
c.drawString(50, 220, "• Surgical intervention if needed")
|
106 |
-
c.drawString(50, 205, "• Physiotherapy for recovery")
|
107 |
|
108 |
c.save()
|
109 |
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
# Function to select a sample image
|
113 |
def use_sample_image(sample_image_path):
|
114 |
-
return sample_image_path
|
115 |
|
116 |
# Define Gradio Interface
|
117 |
with gr.Blocks() as app:
|
118 |
-
gr.Markdown("##
|
119 |
|
120 |
-
# Informative Blog Section
|
121 |
-
with gr.Accordion("Bone Fractures - Symptoms, Causes, & Treatment", open=True):
|
122 |
-
gr.Markdown("""
|
123 |
-
**A fracture** is a break or crack in a bone caused by excessive force.
|
124 |
-
**Common Causes:**
|
125 |
-
- Traumatic injuries (sports, accidents, falls)
|
126 |
-
- Osteoporosis or cancer (weakened bones)
|
127 |
-
|
128 |
-
**Symptoms:**
|
129 |
-
- Severe pain, swelling, bruising
|
130 |
-
- Deformity or inability to use the limb
|
131 |
-
|
132 |
-
**Diagnosis:**
|
133 |
-
- X-rays, CT scans, MRI scans
|
134 |
-
|
135 |
-
**Treatment:**
|
136 |
-
- Plaster casts, splints, surgery if needed
|
137 |
-
- Pain management and physiotherapy
|
138 |
-
|
139 |
-
**First Aid:**
|
140 |
-
- Immobilize the area
|
141 |
-
- Apply a cold pack
|
142 |
-
- Seek medical help immediately
|
143 |
-
""")
|
144 |
-
|
145 |
-
# Patient Details Form
|
146 |
with gr.Row():
|
147 |
-
name = gr.Textbox(label="Patient Name",
|
148 |
age = gr.Number(label="Age")
|
149 |
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
|
150 |
-
|
151 |
-
with gr.Row():
|
152 |
-
parent_name = gr.Textbox(label="Parent's Name", max_length=50)
|
153 |
-
address = gr.Textbox(label="Address", max_length=70)
|
154 |
-
|
155 |
with gr.Row():
|
156 |
weight = gr.Number(label="Weight (kg)")
|
157 |
height = gr.Number(label="Height (cm)")
|
158 |
-
|
159 |
with gr.Row():
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
162 |
|
|
|
|
|
|
|
163 |
with gr.Row():
|
164 |
xray = gr.Image(type="filepath", label="Upload X-ray Image")
|
165 |
-
|
166 |
with gr.Row():
|
167 |
sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
|
168 |
select_button = gr.Button("Load Sample Image")
|
@@ -174,10 +174,9 @@ with gr.Blocks() as app:
|
|
174 |
|
175 |
submit_button.click(
|
176 |
generate_report,
|
177 |
-
inputs=[name, age, gender, weight, height, address,
|
178 |
outputs=[output_file],
|
179 |
)
|
180 |
|
181 |
-
# Launch the Gradio app
|
182 |
if __name__ == "__main__":
|
183 |
app.launch()
|
|
|
1 |
import os
|
2 |
+
import smtplib
|
3 |
+
import mimetypes
|
4 |
+
from email.message import EmailMessage
|
5 |
import gradio as gr
|
6 |
import tensorflow as tf
|
7 |
import numpy as np
|
|
|
19 |
sample_images = [f"samples/{img}" for img in os.listdir("samples") if img.endswith((".png", ".jpg", ".jpeg"))]
|
20 |
|
21 |
# Function to process X-ray and generate a PDF report
|
22 |
+
def generate_report(name, age, gender, weight, height, address, parents, allergies, cause, email, xray):
|
23 |
+
# Input validation
|
24 |
+
name = name[:50]
|
25 |
+
address = address[:100]
|
26 |
+
parents = parents[:50]
|
27 |
+
cause = ' '.join(cause.split()[:100])
|
28 |
+
|
29 |
image_size = (224, 224)
|
30 |
|
31 |
def predict_fracture(xray_path):
|
|
|
35 |
prediction = model.predict(img_array)[0][0]
|
36 |
return prediction
|
37 |
|
|
|
38 |
prediction = predict_fracture(xray)
|
39 |
diagnosed_class = "Normal" if prediction > 0.5 else "Fractured"
|
40 |
severity = "Mild" if prediction < 0.3 else "Moderate" if prediction < 0.7 else "Severe"
|
41 |
|
42 |
+
treatment_data = [
|
43 |
+
["Severity Level", "Recommended Treatment", "Recovery Duration"],
|
44 |
+
["Mild", "Rest, pain relievers, follow-up X-ray", "4-6 weeks"],
|
45 |
+
["Moderate", "Plaster cast, minor surgery if needed", "6-10 weeks"],
|
46 |
+
["Severe", "Major surgery, metal implants, physiotherapy", "Several months"]
|
47 |
+
]
|
48 |
+
|
49 |
+
cost_duration_data = [
|
50 |
+
["Hospital Type", "Estimated Cost", "Recovery Time"],
|
51 |
+
["Government", f"₹{2000 if severity == 'Mild' else 8000 if severity == 'Moderate' else 20000} - ₹{5000 if severity == 'Mild' else 15000 if severity == 'Moderate' else 50000}", "4-12 weeks"],
|
52 |
+
["Private", f"₹{10000 if severity == 'Mild' else 30000 if severity == 'Moderate' else 100000}+", "6 weeks - Several months"]
|
53 |
+
]
|
54 |
|
|
|
55 |
img = Image.open(xray).resize((300, 300))
|
56 |
img_path = f"{name}_xray.png"
|
57 |
img.save(img_path)
|
58 |
|
|
|
59 |
report_path = f"{name}_fracture_report.pdf"
|
60 |
c = canvas.Canvas(report_path, pagesize=letter)
|
61 |
+
|
|
|
|
|
|
|
|
|
62 |
c.setFont("Helvetica-Bold", 16)
|
63 |
+
c.drawString(200, 770, "Bone Fracture Detection Report")
|
|
|
|
|
|
|
64 |
|
|
|
65 |
patient_data = [
|
66 |
+
["Patient Name", name],
|
67 |
["Age", age],
|
68 |
["Gender", gender],
|
|
|
|
|
69 |
["Weight", f"{weight} kg"],
|
70 |
["Height", f"{height} cm"],
|
71 |
+
["Address", address],
|
72 |
+
["Parent's Name", parents],
|
73 |
+
["Allergies", allergies if allergies else "None"],
|
74 |
+
["Cause of Injury", cause],
|
75 |
["Diagnosis", diagnosed_class],
|
76 |
["Injury Severity", severity]
|
77 |
]
|
78 |
|
|
|
79 |
def format_table(data):
|
80 |
+
table = Table(data, colWidths=[270, 270])
|
81 |
table.setStyle(TableStyle([
|
82 |
('BACKGROUND', (0, 0), (-1, 0), colors.darkblue),
|
83 |
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
|
|
|
89 |
]))
|
90 |
return table
|
91 |
|
|
|
92 |
patient_table = format_table(patient_data)
|
93 |
+
patient_table.wrapOn(c, 480, 500)
|
94 |
patient_table.drawOn(c, 50, 620)
|
95 |
|
96 |
+
c.drawInlineImage(img_path, 170, 320, width=250, height=250)
|
|
|
97 |
c.setFont("Helvetica-Bold", 12)
|
98 |
+
c.drawString(250, 290, f"Fractured: {'Yes' if diagnosed_class == 'Fractured' else 'No'}")
|
99 |
+
|
100 |
+
treatment_table = format_table(treatment_data)
|
101 |
+
treatment_table.wrapOn(c, 480, 200)
|
102 |
+
treatment_table.drawOn(c, 50, 200)
|
103 |
|
104 |
+
cost_table = format_table(cost_duration_data)
|
105 |
+
cost_table.wrapOn(c, 480, 150)
|
106 |
+
cost_table.drawOn(c, 50, 80)
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
c.save()
|
109 |
|
110 |
+
send_email(email, report_path)
|
111 |
+
|
112 |
+
return report_path
|
113 |
+
|
114 |
+
# Function to send email
|
115 |
+
def send_email(receiver_email, attachment_path):
|
116 |
+
sender_email = "[email protected]"
|
117 |
+
sender_password = "yourpassword"
|
118 |
+
|
119 |
+
msg = EmailMessage()
|
120 |
+
msg["Subject"] = "Your Bone Fracture Report"
|
121 |
+
msg["From"] = sender_email
|
122 |
+
msg["To"] = receiver_email
|
123 |
+
msg.set_content("Please find attached your bone fracture diagnosis report.")
|
124 |
+
|
125 |
+
mime_type, _ = mimetypes.guess_type(attachment_path)
|
126 |
+
mime_type = mime_type or "application/octet-stream"
|
127 |
+
|
128 |
+
with open(attachment_path, "rb") as attachment:
|
129 |
+
msg.add_attachment(attachment.read(), maintype=mime_type.split("/")[0], subtype=mime_type.split("/")[1], filename=os.path.basename(attachment_path))
|
130 |
+
|
131 |
+
with smtplib.SMTP_SSL("smtp.example.com", 465) as server:
|
132 |
+
server.login(sender_email, sender_password)
|
133 |
+
server.send_message(msg)
|
134 |
|
135 |
# Function to select a sample image
|
136 |
def use_sample_image(sample_image_path):
|
137 |
+
return sample_image_path
|
138 |
|
139 |
# Define Gradio Interface
|
140 |
with gr.Blocks() as app:
|
141 |
+
gr.Markdown("## Bone Fracture Detection System")
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
with gr.Row():
|
144 |
+
name = gr.Textbox(label="Patient Name (Max 50 chars)", max_chars=50)
|
145 |
age = gr.Number(label="Age")
|
146 |
gender = gr.Radio(["Male", "Female", "Other"], label="Gender")
|
147 |
+
|
|
|
|
|
|
|
|
|
148 |
with gr.Row():
|
149 |
weight = gr.Number(label="Weight (kg)")
|
150 |
height = gr.Number(label="Height (cm)")
|
151 |
+
|
152 |
with gr.Row():
|
153 |
+
address = gr.Textbox(label="Address (Max 100 chars)", max_chars=100)
|
154 |
+
parents = gr.Textbox(label="Parent's Name (Max 50 chars)", max_chars=50)
|
155 |
+
|
156 |
+
with gr.Row():
|
157 |
+
allergies = gr.Textbox(label="Allergies (if any)")
|
158 |
+
cause = gr.Textbox(label="Cause of Injury (Max 100 words)")
|
159 |
|
160 |
+
with gr.Row():
|
161 |
+
email = gr.Textbox(label="Patient's Email (To receive report)", type="email")
|
162 |
+
|
163 |
with gr.Row():
|
164 |
xray = gr.Image(type="filepath", label="Upload X-ray Image")
|
165 |
+
|
166 |
with gr.Row():
|
167 |
sample_selector = gr.Dropdown(choices=sample_images, label="Use Sample Image")
|
168 |
select_button = gr.Button("Load Sample Image")
|
|
|
174 |
|
175 |
submit_button.click(
|
176 |
generate_report,
|
177 |
+
inputs=[name, age, gender, weight, height, address, parents, allergies, cause, email, xray],
|
178 |
outputs=[output_file],
|
179 |
)
|
180 |
|
|
|
181 |
if __name__ == "__main__":
|
182 |
app.launch()
|