File size: 11,902 Bytes
c08364f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
 from fastapi import FastAPI, File, UploadFile, Form
 from fastapi.responses import HTMLResponse, Response
 from transformers import pipeline
 from PIL import Image, ImageDraw
 import numpy as np
 import io
 import uvicorn
 import base64
 from reportlab.lib.pagesizes import letter
 from reportlab.platypus import SimpleDocTemplate, Image as ReportLabImage, Paragraph, Spacer
 from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
 from reportlab.lib.colors import red, blue, black
 from reportlab.lib.units import inch
 
 app = FastAPI()
 
 # Chargement des modèles
 def load_models():
     return {
         "KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
         "KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
         "RöntgenMeister": pipeline("image-classification",
             model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
     }
 
 models = load_models()
 
 def translate_label(label):
     translations = {
         "fracture": "Knochenbruch",
         "no fracture": "Kein Knochenbruch",
         "normal": "Normal",
         "abnormal": "Auffällig",
         "F1": "Knochenbruch",
         "NF": "Kein Knochenbruch"
     }
     return translations.get(label.lower(), label)
 
 def create_heatmap_overlay(image, box, score):
     overlay = Image.new('RGBA', image.size, (0, 0, 0, 0))
     draw = ImageDraw.Draw(overlay)
 
     x1, y1 = box['xmin'], box['ymin']
     x2, y2 = box['xmax'], box['ymax']
 
     if score > 0.8:
         fill_color = (255, 0, 0, 100)
         border_color = (255, 0, 0, 255)
     elif score > 0.6:
         fill_color = (255, 165, 0, 100)
         border_color = (255, 165, 0, 255)
     else:
         fill_color = (255, 255, 0, 100)
         border_color = (255, 255, 0, 255)
 
     draw.rectangle([x1, y1, x2, y2], fill=fill_color)
     draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
 
     return overlay
 
 def draw_boxes(image, predictions):
     result_image = image.copy().convert('RGBA')
 
     for pred in predictions:
         box = pred['box']
         score = pred['score']
 
         overlay = create_heatmap_overlay(image, box, score)
         result_image = Image.alpha_composite(result_image, overlay)
 
         draw = ImageDraw.Draw(result_image)
         temp = 36.5 + (score * 2.5)
         label = f"{translate_label(pred['label'])} ({score:.1%}{temp:.1f}°C)"
 
         text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
         draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
 
         draw.text(
             (box['xmin'], box['ymin']-20),
             label,
             fill=(255, 255, 255, 255)
         )
 
     return result_image
 
 def image_to_base64(image):
     buffered = io.BytesIO()
     image.save(buffered, format="PNG")
     img_str = base64.b64encode(buffered.getvalue()).decode()
     return f"data:image/png;base64,{img_str}"
 
 def generate_report(patient_name, analyzed_image_bytes, prediction, confidence):
     buffer = io.BytesIO()
     doc = SimpleDocTemplate(buffer, pagesize=letter)
     styles = getSampleStyleSheet()
     title_style = ParagraphStyle(
         name='TitleStyle',
         parent=styles['Normal'],
         fontSize=16,
         textColor=blue,
         alignment=1  # Center alignment
     )
     heading_style = ParagraphStyle(
         name='HeadingStyle',
         parent=styles['Normal'],
         fontSize=12,
         textColor=red
     )
     prediction_style = ParagraphStyle(
         name='PredictionStyle',
         parent=styles['Normal'],
         fontSize=14,
         alignment=1
     )
 
     story = []
 
     # Hospital Name
     hospital_name = Paragraph("youesh hospital , mumbai ( west )", title_style)
     story.append(hospital_name)
     story.append(Spacer(1, 0.2*inch))
 
     # Patient Greeting
     greeting = Paragraph(f"hello , {patient_name} thank you for using our services this is your radiology report", heading_style)
     story.append(greeting)
     story.append(Spacer(1, 0.2*inch))
 
     # Horizontal Line
     story.append(Paragraph("<hr/>", styles['Normal']))
     story.append(Spacer(1, 0.2*inch))
 
     # Analyzed Image
     img = ReportLabImage(io.BytesIO(analyzed_image_bytes), width=400, height=400, kind='direct')
     story.append(img)
     story.append(Spacer(1, 0.2*inch))
 
     # Prediction
     prediction_text = f"<b>Prediction:</b> {prediction.capitalize()}"
     confidence_text = f"<b>Confidence:</b> {'Yes' if confidence > 0.6 else 'No'}"
     story.append(Paragraph(prediction_text, prediction_style))
     story.append(Paragraph(confidence_text, prediction_style))
 
     doc.build(story)
     buffer.seek(0)
     return buffer.getvalue()
 
 COMMON_STYLES = """
     body {
         font-family: system-ui, -apple-system, sans-serif;
         background: #f0f2f5;
         margin: 0;
         padding: 20px;
         color: #1a1a1a;
     }
     ::-webkit-scrollbar {
         width: 8px;
         height: 8px;
     }
 
     ::-webkit-scrollbar-track {
         background: transparent;
     }
 
     ::-webkit-scrollbar-thumb {
         background-color: rgba(156, 163, 175, 0.5);
         border-radius: 4px;
     }
 
     .container {
         max-width: 1200px;
         margin: 0 auto;
         background: white;
         padding: 20px;
         border-radius: 10px;
         box-shadow: 0 2px 4px rgba(0,0,0,0.1);
     }
     .button {
         background: #404040; /* Changed button background color */
         color: white;
         border: none;
         padding: 12px 30px;
         border-radius: 8px;
         cursor: pointer;
         font-size: 1.1em;
         transition: all 0.3s ease;
         position: relative;
     }
     .button:hover {
         background: #555;
     }
     @keyframes progress {
         0% { width: 0; }
         100% { width: 100%; }
     }
     .button-progress {
         position: absolute;
         bottom: 0;
         left: 0;
         height: 4px;
         background: rgba(255, 255, 255, 0.5);
         width: 0;
     }
     .button:active .button-progress {
         animation: progress 2s linear forwards;
     }
     img {
         max-width: 100%;
         height: auto;
         border-radius: 8px;
     }
     @keyframes blink {
         0% { opacity: 1; }
         50% { opacity: 0; }
         100% { opacity: 1; }
     }
     #loading {
         display: none;
         color: white;
         margin-top: 10px;
         animation: blink 1s infinite;
         text-align: center;
     }
 """
 
 @app.get("/", response_class=HTMLResponse)
 async def main():
     content = f"""
     <!DOCTYPE html>
     <html>
     <head>
         <title>Fraktur Detektion</title>
         <meta name="viewport" content="width=device-width, initial-scale=1.0">
         <style>
             {COMMON_STYLES}
 
             .input-group {
                 margin-bottom: 20px;
             }
             .input-group label {
                 display: block;
                 margin-bottom: 5px;
                 color: #404040;
                 font-weight: bold;
             }
             .input-group input[type="text"] {
                 width: calc(100% - 22px);
                 padding: 10px;
                 border: 1px solid #ccc;
                 border-radius: 4px;
                 font-size: 1em;
             }
 
             .upload-section {
                 background: #2d2d2d;
                 padding: 40px;
                 border-radius: 12px;
                 margin: 20px 0;
                 text-align: center;
                 border: 2px dashed #404040;
                 transition: all 0.3s ease;
                 color: white;
             }
             .upload-section:hover {
                 border-color: #555;
             }
             input[type="file"] {
                 font-size: 1.1em;
                 margin: 20px 0;
                 color: white;
             }
             input[type="file"]::file-selector-button {
                 font-size: 1em;
                 padding: 10px 20px;
                 border-radius: 8px;
                 border: 1px solid #404040;
                 background: #2d2d2d;
                 color: white;
                 transition: all 0.3s ease;
                 cursor: pointer;
             }
             input[type="file"]::file-selector-button:hover {
                 background: #404040;
             }
         </style>
     </head>
     <body>
         <div class="container">
             <form action="/analyze" method="post" enctype="multipart/form-data" onsubmit="document.getElementById('loading').style.display = 'block';">
                 <div class="input-group">
                     <label for="name">Name:</label>
                     <input type="text" id="name" name="name" required>
                 </div>
                 <div class="upload-section">
                     <div>
                         <input type="file" name="file" accept="image/*" required>
                     </div>
                     <button type="submit" class="button">
                         Generate Report
                         <div class="button-progress"></div>
                     </button>
                     <div id="loading">Loading...</div>
                 </div>
             </form>
         </div>
     </body>
     </html>
     """
     return content
 
 @app.post("/analyze", response_class=Response)
 async def analyze_file(name: str = Form(...), file: UploadFile = File(...), threshold: float = Form(0.6)):
     try:
         contents = await file.read()
         image = Image.open(io.BytesIO(contents))
 
         predictions_watcher = models["KnochenWächter"](image)
         predictions_master = models["RöntgenMeister"](image)
         predictions_locator = models["KnochenAuge"](image)
 
         filtered_preds = [p for p in predictions_locator if p['score'] >= threshold]
         analyzed_image = image
         overall_prediction = "No Fracture"
         max_confidence = 0.0
 
         if filtered_preds:
             analyzed_image = draw_boxes(image, filtered_preds)
             overall_prediction = "Fracture Detected"
             max_confidence = max([p['score'] for p in filtered_preds])
 
         image_stream = io.BytesIO()
         analyzed_image.save(image_stream, format="PNG")
         image_bytes = image_stream.getvalue()
 
         pdf_report = generate_report(name, image_bytes, overall_prediction, max_confidence)
 
         headers = {
             'Content-Disposition': 'attachment; filename="report.pdf"'
         }
         return Response(content=pdf_report, headers=headers, media_type="application/pdf")
 
     except Exception as e:
         error_html = f"""
         <!DOCTYPE html>
         <html>
         <head>
             <title>Fehler</title>
             <meta name="viewport" content="width=device-width, initial-scale=1.0">
             <style>
                 {COMMON_STYLES}
                 .error-box {
                     background: #fee2e2;
                     border: 1px solid #ef4444;
                     padding: 20px;
                     border-radius: 8px;
                     margin: 20px 0;
                 }
             </style>
         </head>
         <body>
             <div class="container">
                 <div class="error-box">
                     <h3>Fehler</h3>
                     <p>{str(e)}</p>
                 </div>
                 <a href="/" class="button back-button">
                     ← Zurück
                     <div class="button-progress"></div>
                 </a>
             </div>
         </body>
         </html>
         """
         return HTMLResponse(content=error_html)
 
 if __name__ == "__main__":
     uvicorn.run(app, host="0.0.0.0", port=7860)