Spaces:
Runtime error
Runtime error
File size: 11,902 Bytes
c08364f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import HTMLResponse, Response
from transformers import pipeline
from PIL import Image, ImageDraw
import numpy as np
import io
import uvicorn
import base64
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Image as ReportLabImage, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.colors import red, blue, black
from reportlab.lib.units import inch
app = FastAPI()
# Chargement des modèles
def load_models():
return {
"KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
"KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
"RöntgenMeister": pipeline("image-classification",
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
}
models = load_models()
def translate_label(label):
translations = {
"fracture": "Knochenbruch",
"no fracture": "Kein Knochenbruch",
"normal": "Normal",
"abnormal": "Auffällig",
"F1": "Knochenbruch",
"NF": "Kein Knochenbruch"
}
return translations.get(label.lower(), label)
def create_heatmap_overlay(image, box, score):
overlay = Image.new('RGBA', image.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
x1, y1 = box['xmin'], box['ymin']
x2, y2 = box['xmax'], box['ymax']
if score > 0.8:
fill_color = (255, 0, 0, 100)
border_color = (255, 0, 0, 255)
elif score > 0.6:
fill_color = (255, 165, 0, 100)
border_color = (255, 165, 0, 255)
else:
fill_color = (255, 255, 0, 100)
border_color = (255, 255, 0, 255)
draw.rectangle([x1, y1, x2, y2], fill=fill_color)
draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
return overlay
def draw_boxes(image, predictions):
result_image = image.copy().convert('RGBA')
for pred in predictions:
box = pred['box']
score = pred['score']
overlay = create_heatmap_overlay(image, box, score)
result_image = Image.alpha_composite(result_image, overlay)
draw = ImageDraw.Draw(result_image)
temp = 36.5 + (score * 2.5)
label = f"{translate_label(pred['label'])} ({score:.1%} • {temp:.1f}°C)"
text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
draw.text(
(box['xmin'], box['ymin']-20),
label,
fill=(255, 255, 255, 255)
)
return result_image
def image_to_base64(image):
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return f"data:image/png;base64,{img_str}"
def generate_report(patient_name, analyzed_image_bytes, prediction, confidence):
buffer = io.BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=letter)
styles = getSampleStyleSheet()
title_style = ParagraphStyle(
name='TitleStyle',
parent=styles['Normal'],
fontSize=16,
textColor=blue,
alignment=1 # Center alignment
)
heading_style = ParagraphStyle(
name='HeadingStyle',
parent=styles['Normal'],
fontSize=12,
textColor=red
)
prediction_style = ParagraphStyle(
name='PredictionStyle',
parent=styles['Normal'],
fontSize=14,
alignment=1
)
story = []
# Hospital Name
hospital_name = Paragraph("youesh hospital , mumbai ( west )", title_style)
story.append(hospital_name)
story.append(Spacer(1, 0.2*inch))
# Patient Greeting
greeting = Paragraph(f"hello , {patient_name} thank you for using our services this is your radiology report", heading_style)
story.append(greeting)
story.append(Spacer(1, 0.2*inch))
# Horizontal Line
story.append(Paragraph("<hr/>", styles['Normal']))
story.append(Spacer(1, 0.2*inch))
# Analyzed Image
img = ReportLabImage(io.BytesIO(analyzed_image_bytes), width=400, height=400, kind='direct')
story.append(img)
story.append(Spacer(1, 0.2*inch))
# Prediction
prediction_text = f"<b>Prediction:</b> {prediction.capitalize()}"
confidence_text = f"<b>Confidence:</b> {'Yes' if confidence > 0.6 else 'No'}"
story.append(Paragraph(prediction_text, prediction_style))
story.append(Paragraph(confidence_text, prediction_style))
doc.build(story)
buffer.seek(0)
return buffer.getvalue()
COMMON_STYLES = """
body {
font-family: system-ui, -apple-system, sans-serif;
background: #f0f2f5;
margin: 0;
padding: 20px;
color: #1a1a1a;
}
::-webkit-scrollbar {
width: 8px;
height: 8px;
}
::-webkit-scrollbar-track {
background: transparent;
}
::-webkit-scrollbar-thumb {
background-color: rgba(156, 163, 175, 0.5);
border-radius: 4px;
}
.container {
max-width: 1200px;
margin: 0 auto;
background: white;
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.button {
background: #404040; /* Changed button background color */
color: white;
border: none;
padding: 12px 30px;
border-radius: 8px;
cursor: pointer;
font-size: 1.1em;
transition: all 0.3s ease;
position: relative;
}
.button:hover {
background: #555;
}
@keyframes progress {
0% { width: 0; }
100% { width: 100%; }
}
.button-progress {
position: absolute;
bottom: 0;
left: 0;
height: 4px;
background: rgba(255, 255, 255, 0.5);
width: 0;
}
.button:active .button-progress {
animation: progress 2s linear forwards;
}
img {
max-width: 100%;
height: auto;
border-radius: 8px;
}
@keyframes blink {
0% { opacity: 1; }
50% { opacity: 0; }
100% { opacity: 1; }
}
#loading {
display: none;
color: white;
margin-top: 10px;
animation: blink 1s infinite;
text-align: center;
}
"""
@app.get("/", response_class=HTMLResponse)
async def main():
content = f"""
<!DOCTYPE html>
<html>
<head>
<title>Fraktur Detektion</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
{COMMON_STYLES}
.input-group {
margin-bottom: 20px;
}
.input-group label {
display: block;
margin-bottom: 5px;
color: #404040;
font-weight: bold;
}
.input-group input[type="text"] {
width: calc(100% - 22px);
padding: 10px;
border: 1px solid #ccc;
border-radius: 4px;
font-size: 1em;
}
.upload-section {
background: #2d2d2d;
padding: 40px;
border-radius: 12px;
margin: 20px 0;
text-align: center;
border: 2px dashed #404040;
transition: all 0.3s ease;
color: white;
}
.upload-section:hover {
border-color: #555;
}
input[type="file"] {
font-size: 1.1em;
margin: 20px 0;
color: white;
}
input[type="file"]::file-selector-button {
font-size: 1em;
padding: 10px 20px;
border-radius: 8px;
border: 1px solid #404040;
background: #2d2d2d;
color: white;
transition: all 0.3s ease;
cursor: pointer;
}
input[type="file"]::file-selector-button:hover {
background: #404040;
}
</style>
</head>
<body>
<div class="container">
<form action="/analyze" method="post" enctype="multipart/form-data" onsubmit="document.getElementById('loading').style.display = 'block';">
<div class="input-group">
<label for="name">Name:</label>
<input type="text" id="name" name="name" required>
</div>
<div class="upload-section">
<div>
<input type="file" name="file" accept="image/*" required>
</div>
<button type="submit" class="button">
Generate Report
<div class="button-progress"></div>
</button>
<div id="loading">Loading...</div>
</div>
</form>
</div>
</body>
</html>
"""
return content
@app.post("/analyze", response_class=Response)
async def analyze_file(name: str = Form(...), file: UploadFile = File(...), threshold: float = Form(0.6)):
try:
contents = await file.read()
image = Image.open(io.BytesIO(contents))
predictions_watcher = models["KnochenWächter"](image)
predictions_master = models["RöntgenMeister"](image)
predictions_locator = models["KnochenAuge"](image)
filtered_preds = [p for p in predictions_locator if p['score'] >= threshold]
analyzed_image = image
overall_prediction = "No Fracture"
max_confidence = 0.0
if filtered_preds:
analyzed_image = draw_boxes(image, filtered_preds)
overall_prediction = "Fracture Detected"
max_confidence = max([p['score'] for p in filtered_preds])
image_stream = io.BytesIO()
analyzed_image.save(image_stream, format="PNG")
image_bytes = image_stream.getvalue()
pdf_report = generate_report(name, image_bytes, overall_prediction, max_confidence)
headers = {
'Content-Disposition': 'attachment; filename="report.pdf"'
}
return Response(content=pdf_report, headers=headers, media_type="application/pdf")
except Exception as e:
error_html = f"""
<!DOCTYPE html>
<html>
<head>
<title>Fehler</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<style>
{COMMON_STYLES}
.error-box {
background: #fee2e2;
border: 1px solid #ef4444;
padding: 20px;
border-radius: 8px;
margin: 20px 0;
}
</style>
</head>
<body>
<div class="container">
<div class="error-box">
<h3>Fehler</h3>
<p>{str(e)}</p>
</div>
<a href="/" class="button back-button">
← Zurück
<div class="button-progress"></div>
</a>
</div>
</body>
</html>
"""
return HTMLResponse(content=error_html)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
|