Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,716 Bytes
6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 8c651f8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa 8c651f8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa d25f5c8 6f629aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
#!/usr/bin/env python3
"""
PyLate ZeroGPU Document Search with Runtime Package Installation
Complete version that installs all dependencies at startup if needed.
"""
import subprocess
import sys
import os
import time
print("π Starting PyLate ZeroGPU Document Search...")
print("π§ Checking and installing required packages...")
# ===== RUNTIME PACKAGE INSTALLATION =====
def install_package(package, quiet=True):
"""Install a package at runtime."""
try:
if quiet:
subprocess.check_call([
sys.executable, '-m', 'pip', 'install', package,
'--quiet', '--disable-pip-version-check'
], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
else:
subprocess.check_call([sys.executable, '-m', 'pip', 'install', package])
return True
except Exception as e:
print(f"β οΈ Failed to install {package}: {e}")
return False
def check_and_install_packages():
"""Check and install all required packages."""
# Define packages with their import names and pip names
packages_to_check = [
# (import_name, pip_package, test_import)
('gradio', 'gradio==4.44.0', lambda: __import__('gradio')),
('spaces', 'spaces', lambda: __import__('spaces')),
('sentence_transformers', 'sentence-transformers', lambda: __import__('sentence_transformers')),
('docx', 'python-docx', lambda: __import__('docx')),
('fitz', 'pymupdf', lambda: __import__('fitz')),
('unstructured', 'unstructured', lambda: __import__('unstructured')),
('pandas', 'pandas', lambda: __import__('pandas')),
('numpy', 'numpy', lambda: __import__('numpy')),
('huggingface_hub', 'huggingface_hub', lambda: __import__('huggingface_hub')),
('accelerate', 'accelerate', lambda: __import__('accelerate')),
('pylate', 'pylate==1.2.0', lambda: __import__('pylate')),
]
installed_count = 0
failed_packages = []
for import_name, pip_package, test_func in packages_to_check:
try:
test_func()
print(f"β
{import_name} - already installed")
installed_count += 1
except ImportError:
print(f"π¦ Installing {pip_package}...")
success = install_package(pip_package, quiet=False)
if success:
try:
# Test import after installation
test_func()
print(f"β
{import_name} - installed successfully")
installed_count += 1
except ImportError:
print(f"β {import_name} - installation failed (import test failed)")
failed_packages.append(import_name)
else:
print(f"β {import_name} - installation failed")
failed_packages.append(import_name)
print(f"\nπ Installation Summary:")
print(f" β
Successfully installed/verified: {installed_count}/{len(packages_to_check)}")
if failed_packages:
print(f" β Failed packages: {', '.join(failed_packages)}")
print(f" β οΈ App may not work correctly with missing packages")
else:
print(f" π All packages ready!")
return len(failed_packages) == 0
# Install packages before importing anything else
installation_success = check_and_install_packages()
# Now import everything
print("\nπ Loading modules...")
try:
import gradio as gr
import spaces
import torch
import tempfile
import sqlite3
import json
import hashlib
from pathlib import Path
from typing import List, Dict, Any, Tuple
print("β
Core modules loaded")
except ImportError as e:
print(f"β Failed to import core modules: {e}")
sys.exit(1)
# Import document processing modules with fallbacks
try:
import docx
print("β
python-docx loaded")
except ImportError:
print("β οΈ python-docx not available - DOCX processing will be disabled")
docx = None
try:
import fitz # pymupdf
print("β
PyMuPDF loaded")
except ImportError:
print("β οΈ PyMuPDF not available - PDF processing will be limited")
fitz = None
try:
from unstructured.partition.auto import partition
print("β
Unstructured loaded")
except ImportError:
print("β οΈ Unstructured not available - fallback text extraction disabled")
partition = None
try:
from pylate import models, indexes, retrieve
print("β
PyLate loaded")
except ImportError as e:
print(f"β PyLate failed to load: {e}")
print("π Attempting to install PyLate...")
install_package('pylate==1.2.0', quiet=False)
try:
from pylate import models, indexes, retrieve
print("β
PyLate loaded after installation")
except ImportError:
print("β PyLate installation failed - core functionality unavailable")
sys.exit(1)
# Set environment variables
os.environ["TRITON_CACHE_DIR"] = "/tmp/triton_cache"
os.environ["TORCH_COMPILE_DISABLE"] = "1"
print("π― All modules loaded successfully!\n")
# Global variables for PyLate components
model = None
index = None
retriever = None
metadata_db = None
# ===== DOCUMENT PROCESSING FUNCTIONS =====
def extract_text_from_pdf(file_path: str) -> str:
"""Extract text from PDF file using PyMuPDF and unstructured as fallback."""
text = ""
if not fitz:
return "Error: PyMuPDF not available for PDF processing"
try:
# Use PyMuPDF (fitz) - more reliable than PyPDF2
doc = fitz.open(file_path)
for page in doc:
text += page.get_text() + "\n"
doc.close()
# If no text extracted, try unstructured
if not text.strip() and partition:
elements = partition(filename=file_path)
text = "\n".join([str(element) for element in elements])
except Exception as e:
# Final fallback to unstructured
if partition:
try:
elements = partition(filename=file_path)
text = "\n".join([str(element) for element in elements])
except:
text = f"Error: Could not extract text from PDF: {str(e)}"
else:
text = f"Error: Could not extract text from PDF: {str(e)}"
return text.strip()
def extract_text_from_docx(file_path: str) -> str:
"""Extract text from DOCX file."""
if not docx:
return "Error: python-docx not available for DOCX processing"
try:
doc = docx.Document(file_path)
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
return text.strip()
except Exception as e:
return f"Error: Could not extract text from DOCX: {str(e)}"
def extract_text_from_txt(file_path: str) -> str:
"""Extract text from TXT file."""
try:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read().strip()
except UnicodeDecodeError:
try:
with open(file_path, 'r', encoding='latin1') as file:
return file.read().strip()
except Exception as e:
return f"Error: Could not read text file: {str(e)}"
except Exception as e:
return f"Error: Could not read text file: {str(e)}"
def chunk_text(text: str, chunk_size: int = 1000, overlap: int = 100) -> List[Dict[str, Any]]:
"""Chunk text with overlap and return metadata."""
chunks = []
start = 0
chunk_index = 0
while start < len(text):
end = start + chunk_size
chunk_text = text[start:end]
# Try to break at sentence boundary
if end < len(text):
last_period = chunk_text.rfind('.')
last_newline = chunk_text.rfind('\n')
break_point = max(last_period, last_newline)
if break_point > chunk_size * 0.7:
chunk_text = chunk_text[:break_point + 1]
end = start + break_point + 1
if chunk_text.strip():
chunks.append({
'text': chunk_text.strip(),
'start': start,
'end': end,
'index': chunk_index,
'length': len(chunk_text.strip())
})
chunk_index += 1
start = max(start + 1, end - overlap)
return chunks
# ===== METADATA DATABASE =====
def init_metadata_db():
"""Initialize SQLite database for metadata."""
global metadata_db
db_path = "metadata.db"
metadata_db = sqlite3.connect(db_path, check_same_thread=False)
metadata_db.execute("""
CREATE TABLE IF NOT EXISTS documents (
doc_id TEXT PRIMARY KEY,
filename TEXT NOT NULL,
file_hash TEXT NOT NULL,
original_text TEXT NOT NULL,
chunk_index INTEGER NOT NULL,
total_chunks INTEGER NOT NULL,
chunk_start INTEGER NOT NULL,
chunk_end INTEGER NOT NULL,
chunk_size INTEGER NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
metadata_db.execute("""
CREATE INDEX IF NOT EXISTS idx_filename ON documents(filename);
""")
metadata_db.commit()
def add_document_metadata(doc_id: str, filename: str, file_hash: str,
original_text: str, chunk_info: Dict[str, Any], total_chunks: int):
"""Add document metadata to database."""
global metadata_db
metadata_db.execute("""
INSERT OR REPLACE INTO documents
(doc_id, filename, file_hash, original_text, chunk_index, total_chunks,
chunk_start, chunk_end, chunk_size)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
doc_id, filename, file_hash, original_text,
chunk_info['index'], total_chunks,
chunk_info['start'], chunk_info['end'], chunk_info['length']
))
metadata_db.commit()
def get_document_metadata(doc_id: str) -> Dict[str, Any]:
"""Get document metadata by ID."""
global metadata_db
cursor = metadata_db.execute(
"SELECT * FROM documents WHERE doc_id = ?", (doc_id,)
)
row = cursor.fetchone()
if row:
columns = [desc[0] for desc in cursor.description]
return dict(zip(columns, row))
return {}
# ===== PYLATE INITIALIZATION =====
@spaces.GPU(duration=120) # Allow 2 minutes for initialization
def initialize_pylate(model_name: str = "colbert-ir/colbertv2.0") -> str:
"""Initialize PyLate components on ZeroGPU H200."""
global model, index, retriever
try:
# Initialize metadata database
init_metadata_db()
# Load ColBERT model
model = models.ColBERT(model_name_or_path=model_name)
# Move to GPU - ZeroGPU provides CUDA access
device_info = "CPU"
if torch.cuda.is_available():
model = model.to('cuda')
device_name = torch.cuda.get_device_name()
device_info = f"GPU: {device_name}"
# Initialize PLAID index with optimized settings for ZeroGPU
index = indexes.PLAID(
index_folder="./pylate_index",
index_name="documents",
override=True,
kmeans_niters=1, # Reduce k-means iterations for faster setup
nbits=2 # Optimized for memory efficiency
)
# Initialize retriever
retriever = retrieve.ColBERT(index=index)
return f"β
PyLate initialized successfully on ZeroGPU!\nπ₯ Model: {model_name}\nπ― Device: {device_info}\nπΎ VRAM: ~70GB available\nπ Ready for document processing!"
except Exception as e:
return f"β Error initializing PyLate: {str(e)}\n\nPlease check the logs for more details."
# ===== DOCUMENT PROCESSING =====
@spaces.GPU(duration=300) # Allow 5 minutes for processing
def process_documents(files, chunk_size: int = 1000, overlap: int = 100) -> str:
"""Process uploaded documents and add to index using ZeroGPU."""
global model, index, metadata_db
if not model or not index:
return "β Please initialize PyLate first!"
if not files:
return "β No files uploaded!"
try:
all_documents = []
all_doc_ids = []
processed_files = []
skipped_files = []
for file in files:
# Get file info
filename = Path(file.name).name
file_path = file.name
# Calculate file hash
with open(file_path, 'rb') as f:
file_hash = hashlib.md5(f.read()).hexdigest()
# Extract text based on file type
text = ""
if filename.lower().endswith('.pdf'):
if fitz:
text = extract_text_from_pdf(file_path)
else:
skipped_files.append(f"{filename}: PDF processing not available")
continue
elif filename.lower().endswith('.docx'):
if docx:
text = extract_text_from_docx(file_path)
else:
skipped_files.append(f"{filename}: DOCX processing not available")
continue
elif filename.lower().endswith('.txt'):
text = extract_text_from_txt(file_path)
else:
skipped_files.append(f"{filename}: Unsupported file type")
continue
if not text or text.startswith("Error:"):
skipped_files.append(f"{filename}: Failed to extract text")
continue
# Chunk the text
chunks = chunk_text(text, chunk_size, overlap)
if not chunks:
skipped_files.append(f"{filename}: No valid chunks created")
continue
# Process each chunk
for chunk in chunks:
doc_id = f"{filename}_chunk_{chunk['index']}"
all_documents.append(chunk['text'])
all_doc_ids.append(doc_id)
# Store metadata
add_document_metadata(
doc_id=doc_id,
filename=filename,
file_hash=file_hash,
original_text=chunk['text'],
chunk_info=chunk,
total_chunks=len(chunks)
)
processed_files.append(f"{filename}: {len(chunks)} chunks")
if not all_documents:
return "β No text could be extracted from uploaded files!\n" + "\n".join(skipped_files)
# Encode documents with PyLate on H200 GPU
document_embeddings = model.encode(
all_documents,
batch_size=32, # Optimized batch size for H200's 70GB VRAM
is_query=False,
show_progress_bar=True
)
# Add to PLAID index
index.add_documents(
documents_ids=all_doc_ids,
documents_embeddings=document_embeddings
)
result = f"β
Successfully processed {len([f for f in files if not any(f.name in skip for skip in skipped_files)])} files on ZeroGPU H200:\n"
result += f"π Total chunks indexed: {len(all_documents)}\n"
result += f"π Documents processed:\n"
for file_info in processed_files:
result += f" β’ {file_info}\n"
if skipped_files:
result += f"\nβ οΈ Skipped files:\n"
for skip_info in skipped_files:
result += f" β’ {skip_info}\n"
result += f"\nπ Document index ready for search!"
return result
except Exception as e:
return f"β Error processing documents: {str(e)}\n\nPlease check your files and try again."
# ===== SEARCH FUNCTION =====
@spaces.GPU(duration=60) # 1 minute for search
def search_documents(query: str, k: int = 5, show_chunks: bool = True) -> str:
"""Search documents using PyLate on ZeroGPU."""
global model, retriever, metadata_db
if not model or not retriever:
return "β Please initialize PyLate and process documents first!"
if not query.strip():
return "β Please enter a search query!"
try:
# Encode query on GPU
query_embedding = model.encode([query], is_query=True)
# Search
results = retriever.retrieve(query_embedding, k=k)[0]
if not results:
return "π No results found for your query.\n\nTry:\nβ’ Different keywords\nβ’ Broader search terms\nβ’ Check if documents were processed correctly"
# Format results with metadata
formatted_results = [f"π **Search Results for:** '{query}' (powered by ZeroGPU H200)\n"]
for i, result in enumerate(results):
doc_id = result['id']
score = result['score']
# Get metadata
metadata = get_document_metadata(doc_id)
formatted_results.append(f"## Result {i+1} (Relevance: {score:.3f})")
formatted_results.append(
f"**π File:** {metadata.get('filename', 'Unknown')}")
formatted_results.append(
f"**π Chunk:** {metadata.get('chunk_index', 0) + 1}/{metadata.get('total_chunks', 1)}")
if show_chunks:
text = metadata.get('original_text', '')
if len(text) > 400:
preview = text[:400] + "..."
else:
preview = text
formatted_results.append(f"**π¬ Text:** {preview}")
formatted_results.append("---")
formatted_results.append(f"\nπ― Found {len(results)} relevant results using ColBERT semantic search")
return "\n".join(formatted_results)
except Exception as e:
return f"β Error searching: {str(e)}\n\nPlease try again or check if PyLate is properly initialized."
# ===== GRADIO INTERFACE =====
def create_interface():
"""Create the Gradio interface for ZeroGPU."""
with gr.Blocks(title="PyLate ZeroGPU Document Search", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π PyLate ZeroGPU Document Search
### Powered by ColBERT and NVIDIA H200 (70GB VRAM)
Upload documents, process them with PyLate on ZeroGPU, and perform lightning-fast semantic search!
**π₯ ZeroGPU Features:**
- π― NVIDIA H200 GPU with 70GB VRAM
- β‘ Dynamic GPU allocation (only when needed)
- π Free for HF Pro subscribers
- π Optimized for PyTorch/ColBERT workloads
- π Automatic package installation
""")
# Status indicator
with gr.Row():
gr.Markdown(f"""
**π System Status:**
- β
PyLate: Ready
- β
Document Processing: {"PDF β
" if fitz else "PDF β"} | {"DOCX β
" if docx else "DOCX β"} | TXT β
- β
ZeroGPU: Available
""")
with gr.Tab("π Setup"):
gr.Markdown("### Initialize PyLate System on ZeroGPU H200")
model_choice = gr.Dropdown(
choices=[
"colbert-ir/colbertv2.0",
"sentence-transformers/all-MiniLM-L6-v2"
],
value="colbert-ir/colbertv2.0",
label="Select ColBERT Model",
info="ColBERT v2.0 is recommended for best performance"
)
init_btn = gr.Button("π Initialize PyLate on ZeroGPU", variant="primary", size="lg")
init_status = gr.Textbox(label="Initialization Status", lines=6, max_lines=10)
init_btn.click(
initialize_pylate,
inputs=model_choice,
outputs=init_status
)
with gr.Tab("π Document Upload"):
gr.Markdown("### Upload and Process Documents on H200 GPU")
with gr.Row():
with gr.Column():
file_upload = gr.File(
file_count="multiple",
file_types=[".pdf", ".docx", ".txt"],
label="Upload Documents",
info="Supported: PDF, DOCX, TXT files"
)
with gr.Row():
chunk_size = gr.Slider(
minimum=500,
maximum=3000,
value=1000,
step=100,
label="Chunk Size (characters)",
info="Larger chunks = more context, smaller chunks = more precise"
)
overlap = gr.Slider(
minimum=0,
maximum=500,
value=100,
step=50,
label="Chunk Overlap (characters)",
info="Overlap helps maintain context between chunks"
)
process_btn = gr.Button(
"β‘ Process Documents on ZeroGPU", variant="primary", size="lg")
with gr.Column():
process_status = gr.Textbox(
label="Processing Status",
lines=15,
max_lines=20,
info="Processing status and results will appear here"
)
process_btn.click(
process_documents,
inputs=[file_upload, chunk_size, overlap],
outputs=process_status
)
with gr.Tab("π Search"):
gr.Markdown("### Search Your Documents with H200 Power")
with gr.Row():
with gr.Column():
search_query = gr.Textbox(
label="Search Query",
placeholder="Enter your search query... (e.g., 'machine learning algorithms', 'financial projections')",
lines=2,
info="Use natural language - ColBERT understands semantic meaning"
)
with gr.Row():
num_results = gr.Slider(
minimum=1,
maximum=20,
value=5,
step=1,
label="Number of Results",
info="How many relevant chunks to return"
)
show_chunks = gr.Checkbox(
value=True,
label="Show Text Chunks",
info="Display the actual text content"
)
search_btn = gr.Button("π Search with ZeroGPU", variant="primary", size="lg")
with gr.Column():
search_results = gr.Textbox(
label="Search Results",
lines=18,
max_lines=25,
info="Semantic search results will appear here"
)
search_btn.click(
search_documents,
inputs=[search_query, num_results, show_chunks],
outputs=search_results
)
with gr.Tab("βΉοΈ ZeroGPU Info"):
gr.Markdown("""
### About ZeroGPU PyLate Search
**π₯ Powered by NVIDIA H200 Tensor Core GPU**
#### π ZeroGPU Features:
- **70GB HBM3 Memory** - Massive capacity for large document collections
- **Dynamic Allocation** - GPU assigned only when functions need it
- **Optimized for PyTorch** - Perfect for ColBERT/PyLate workloads
- **Free for Pro Users** - No additional charges beyond HF Pro
- **Auto Scaling** - Efficient resource usage and queue management
#### π§ How ColBERT Works:
1. **Late Interaction** - Processes queries and documents separately
2. **Token-level Matching** - Fine-grained semantic understanding
3. **Efficient Retrieval** - Fast search with high-quality results
4. **GPU Acceleration** - Leverages H200 for rapid inference
#### π Performance Benefits:
- **10-100x faster** than CPU-based search
- **Large batch processing** - 32+ documents simultaneously
- **Real-time search** - Sub-second query responses
- **Massive scale** - 70GB VRAM handles huge document sets
#### π οΈ Technical Details:
- **Runtime Package Installation** - Automatically installs dependencies
- **Gradio SDK Required** - ZeroGPU doesn't support Docker
- **Smart Chunking** - Intelligent text segmentation with overlap
- **Metadata Tracking** - SQLite database for chunk information
#### π― Usage Tips:
1. **Initialize first** - Required before processing documents
2. **Natural language queries** - ColBERT understands meaning, not just keywords
3. **Adjust chunk size** - Larger for context, smaller for precision
4. **Multiple file types** - Mix PDFs, DOCX, and TXT files
5. **Semantic search** - Try "concepts similar to X" type queries
#### π Privacy & Security:
- Documents processed in-memory only
- No permanent storage of your content
- Processing happens on HF infrastructure
- Automatic cleanup after session ends
---
**Built with β€οΈ using:**
- π€ PyLate & ColBERT for semantic search
- β‘ ZeroGPU H200 for GPU acceleration
- π¨ Gradio for the interface
- π Python ecosystem for document processing
""")
return demo
# ===== MAIN =====
if __name__ == "__main__":
print("π Launching PyLate ZeroGPU Document Search interface...")
# Check if running on ZeroGPU
if torch.cuda.is_available():
print(f"π₯ GPU detected: {torch.cuda.get_device_name()}")
else:
print("π» Running on CPU (GPU will be allocated when @spaces.GPU functions are called)")
demo = create_interface()
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |