fullstack's picture
.
8adb381
#!/usr/bin/env python3
"""
PyLate ZeroGPU Document Search with Runtime Package Installation
Complete version that installs all dependencies at startup if needed.
"""
import subprocess
import sys
import os
import time
print("πŸš€ Starting PyLate ZeroGPU Document Search...")
print("πŸ”§ Checking and installing required packages...")
# ===== RUNTIME PACKAGE INSTALLATION =====
def install_package(package, quiet=True):
"""Install a package at runtime."""
try:
if quiet:
subprocess.check_call([
sys.executable, '-m', 'pip', 'install', package,
'--quiet', '--disable-pip-version-check'
], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
else:
subprocess.check_call([sys.executable, '-m', 'pip', 'install', package])
return True
except Exception as e:
print(f"⚠️ Failed to install {package}: {e}")
return False
def check_and_install_packages():
"""Check and install all required packages."""
# Define packages with their import names and pip names
packages_to_check = [
# (import_name, pip_package, test_import)
('gradio', 'gradio==4.44.0', lambda: __import__('gradio')),
('spaces', 'spaces', lambda: __import__('spaces')),
('sentence_transformers', 'sentence-transformers', lambda: __import__('sentence_transformers')),
('docx', 'python-docx', lambda: __import__('docx')),
('fitz', 'pymupdf', lambda: __import__('fitz')),
('unstructured', 'unstructured', lambda: __import__('unstructured')),
('pandas', 'pandas', lambda: __import__('pandas')),
('numpy', 'numpy', lambda: __import__('numpy')),
('huggingface_hub', 'huggingface_hub', lambda: __import__('huggingface_hub')),
('accelerate', 'accelerate', lambda: __import__('accelerate')),
('pylate', 'pylate==1.2.0', lambda: __import__('pylate')),
]
installed_count = 0
failed_packages = []
for import_name, pip_package, test_func in packages_to_check:
try:
test_func()
print(f"βœ… {import_name} - already installed")
installed_count += 1
except ImportError:
print(f"πŸ“¦ Installing {pip_package}...")
success = install_package(pip_package, quiet=False)
if success:
try:
# Test import after installation
test_func()
print(f"βœ… {import_name} - installed successfully")
installed_count += 1
except ImportError:
print(f"❌ {import_name} - installation failed (import test failed)")
failed_packages.append(import_name)
else:
print(f"❌ {import_name} - installation failed")
failed_packages.append(import_name)
print(f"\nπŸ“Š Installation Summary:")
print(f" βœ… Successfully installed/verified: {installed_count}/{len(packages_to_check)}")
if failed_packages:
print(f" ❌ Failed packages: {', '.join(failed_packages)}")
print(f" ⚠️ App may not work correctly with missing packages")
else:
print(f" πŸŽ‰ All packages ready!")
return len(failed_packages) == 0
# Install packages before importing anything else
installation_success = check_and_install_packages()
# Now import everything
print("\nπŸ”„ Loading modules...")
try:
import gradio as gr
import spaces
import torch
import tempfile
import sqlite3
import json
import hashlib
from pathlib import Path
from typing import List, Dict, Any, Tuple
print("βœ… Core modules loaded")
except ImportError as e:
print(f"❌ Failed to import core modules: {e}")
sys.exit(1)
# Import document processing modules with fallbacks
try:
import docx
print("βœ… python-docx loaded")
except ImportError:
print("⚠️ python-docx not available - DOCX processing will be disabled")
docx = None
try:
import fitz # pymupdf
print("βœ… PyMuPDF loaded")
except ImportError:
print("⚠️ PyMuPDF not available - PDF processing will be limited")
fitz = None
try:
from unstructured.partition.auto import partition
print("βœ… Unstructured loaded")
except ImportError:
print("⚠️ Unstructured not available - fallback text extraction disabled")
partition = None
try:
from pylate import models, indexes, retrieve
print("βœ… PyLate loaded")
except ImportError as e:
print(f"❌ PyLate failed to load: {e}")
print("πŸ”„ Attempting to install PyLate...")
install_package('pylate==1.2.0', quiet=False)
try:
from pylate import models, indexes, retrieve
print("βœ… PyLate loaded after installation")
except ImportError:
print("❌ PyLate installation failed - core functionality unavailable")
sys.exit(1)
# Set environment variables
os.environ["TRITON_CACHE_DIR"] = "/tmp/triton_cache"
os.environ["TORCH_COMPILE_DISABLE"] = "1"
print("🎯 All modules loaded successfully!\n")
# Global variables for PyLate components
model = None
index = None
retriever = None
metadata_db = None
# ===== DOCUMENT PROCESSING FUNCTIONS =====
def extract_text_from_pdf(file_path: str) -> str:
"""Extract text from PDF file using PyMuPDF and unstructured as fallback."""
text = ""
if not fitz:
return "Error: PyMuPDF not available for PDF processing"
try:
# Use PyMuPDF (fitz) - more reliable than PyPDF2
doc = fitz.open(file_path)
for page in doc:
text += page.get_text() + "\n"
doc.close()
# If no text extracted, try unstructured
if not text.strip() and partition:
elements = partition(filename=file_path)
text = "\n".join([str(element) for element in elements])
except Exception as e:
# Final fallback to unstructured
if partition:
try:
elements = partition(filename=file_path)
text = "\n".join([str(element) for element in elements])
except:
text = f"Error: Could not extract text from PDF: {str(e)}"
else:
text = f"Error: Could not extract text from PDF: {str(e)}"
return text.strip()
def extract_text_from_docx(file_path: str) -> str:
"""Extract text from DOCX file."""
if not docx:
return "Error: python-docx not available for DOCX processing"
try:
doc = docx.Document(file_path)
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
return text.strip()
except Exception as e:
return f"Error: Could not extract text from DOCX: {str(e)}"
def extract_text_from_txt(file_path: str) -> str:
"""Extract text from TXT file."""
try:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read().strip()
except UnicodeDecodeError:
try:
with open(file_path, 'r', encoding='latin1') as file:
return file.read().strip()
except Exception as e:
return f"Error: Could not read text file: {str(e)}"
except Exception as e:
return f"Error: Could not read text file: {str(e)}"
def chunk_text(text: str, chunk_size: int = 1000, overlap: int = 100) -> List[Dict[str, Any]]:
"""Chunk text with overlap and return metadata."""
chunks = []
start = 0
chunk_index = 0
while start < len(text):
end = start + chunk_size
chunk_text = text[start:end]
# Try to break at sentence boundary
if end < len(text):
last_period = chunk_text.rfind('.')
last_newline = chunk_text.rfind('\n')
break_point = max(last_period, last_newline)
if break_point > chunk_size * 0.7:
chunk_text = chunk_text[:break_point + 1]
end = start + break_point + 1
if chunk_text.strip():
chunks.append({
'text': chunk_text.strip(),
'start': start,
'end': end,
'index': chunk_index,
'length': len(chunk_text.strip())
})
chunk_index += 1
start = max(start + 1, end - overlap)
return chunks
# ===== METADATA DATABASE =====
def init_metadata_db():
"""Initialize SQLite database for metadata."""
global metadata_db
db_path = "metadata.db"
metadata_db = sqlite3.connect(db_path, check_same_thread=False)
metadata_db.execute("""
CREATE TABLE IF NOT EXISTS documents (
doc_id TEXT PRIMARY KEY,
filename TEXT NOT NULL,
file_hash TEXT NOT NULL,
original_text TEXT NOT NULL,
chunk_index INTEGER NOT NULL,
total_chunks INTEGER NOT NULL,
chunk_start INTEGER NOT NULL,
chunk_end INTEGER NOT NULL,
chunk_size INTEGER NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
metadata_db.execute("""
CREATE INDEX IF NOT EXISTS idx_filename ON documents(filename);
""")
metadata_db.commit()
def add_document_metadata(doc_id: str, filename: str, file_hash: str,
original_text: str, chunk_info: Dict[str, Any], total_chunks: int):
"""Add document metadata to database."""
global metadata_db
metadata_db.execute("""
INSERT OR REPLACE INTO documents
(doc_id, filename, file_hash, original_text, chunk_index, total_chunks,
chunk_start, chunk_end, chunk_size)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
doc_id, filename, file_hash, original_text,
chunk_info['index'], total_chunks,
chunk_info['start'], chunk_info['end'], chunk_info['length']
))
metadata_db.commit()
def get_document_metadata(doc_id: str) -> Dict[str, Any]:
"""Get document metadata by ID."""
global metadata_db
cursor = metadata_db.execute(
"SELECT * FROM documents WHERE doc_id = ?", (doc_id,)
)
row = cursor.fetchone()
if row:
columns = [desc[0] for desc in cursor.description]
return dict(zip(columns, row))
return {}
# ===== PYLATE INITIALIZATION =====
@spaces.GPU(duration=120) # Allow 2 minutes for initialization
def initialize_pylate(model_name: str = "colbert-ir/colbertv2.0") -> str:
"""Initialize PyLate components on ZeroGPU H200."""
global model, index, retriever
try:
# Initialize metadata database
init_metadata_db()
# Load ColBERT model
model = models.ColBERT(model_name_or_path=model_name)
# Move to GPU - ZeroGPU provides CUDA access
device_info = "CPU"
if torch.cuda.is_available():
model = model.to('cuda')
device_name = torch.cuda.get_device_name()
device_info = f"GPU: {device_name}"
# Initialize PLAID index with optimized settings for ZeroGPU
index = indexes.PLAID(
index_folder="./pylate_index",
index_name="documents",
override=True,
kmeans_niters=1, # Reduce k-means iterations for faster setup
nbits=2 # Optimized for memory efficiency
)
# Initialize retriever
retriever = retrieve.ColBERT(index=index)
return f"βœ… PyLate initialized successfully on ZeroGPU!\nπŸ”₯ Model: {model_name}\n🎯 Device: {device_info}\nπŸ’Ύ VRAM: ~70GB available\nπŸš€ Ready for document processing!"
except Exception as e:
return f"❌ Error initializing PyLate: {str(e)}\n\nPlease check the logs for more details."
# ===== DOCUMENT PROCESSING =====
@spaces.GPU(duration=300) # Allow 5 minutes for processing
def process_documents(files, chunk_size: int = 1000, overlap: int = 100) -> str:
"""Process uploaded documents and add to index using ZeroGPU."""
global model, index, metadata_db
if not model or not index:
return "❌ Please initialize PyLate first!"
if not files:
return "❌ No files uploaded!"
try:
all_documents = []
all_doc_ids = []
processed_files = []
skipped_files = []
for file in files:
# Get file info
filename = Path(file.name).name
file_path = file.name
# Calculate file hash
with open(file_path, 'rb') as f:
file_hash = hashlib.md5(f.read()).hexdigest()
# Extract text based on file type
text = ""
if filename.lower().endswith('.pdf'):
if fitz:
text = extract_text_from_pdf(file_path)
else:
skipped_files.append(f"{filename}: PDF processing not available")
continue
elif filename.lower().endswith('.docx'):
if docx:
text = extract_text_from_docx(file_path)
else:
skipped_files.append(f"{filename}: DOCX processing not available")
continue
elif filename.lower().endswith('.txt'):
text = extract_text_from_txt(file_path)
else:
skipped_files.append(f"{filename}: Unsupported file type")
continue
if not text or text.startswith("Error:"):
skipped_files.append(f"{filename}: Failed to extract text")
continue
# Chunk the text
chunks = chunk_text(text, chunk_size, overlap)
if not chunks:
skipped_files.append(f"{filename}: No valid chunks created")
continue
# Process each chunk
for chunk in chunks:
doc_id = f"{filename}_chunk_{chunk['index']}"
all_documents.append(chunk['text'])
all_doc_ids.append(doc_id)
# Store metadata
add_document_metadata(
doc_id=doc_id,
filename=filename,
file_hash=file_hash,
original_text=chunk['text'],
chunk_info=chunk,
total_chunks=len(chunks)
)
processed_files.append(f"{filename}: {len(chunks)} chunks")
if not all_documents:
return "❌ No text could be extracted from uploaded files!\n" + "\n".join(skipped_files)
# Encode documents with PyLate on H200 GPU
document_embeddings = model.encode(
all_documents,
batch_size=32, # Optimized batch size for H200's 70GB VRAM
is_query=False,
show_progress_bar=True
)
# Add to PLAID index
index.add_documents(
documents_ids=all_doc_ids,
documents_embeddings=document_embeddings
)
result = f"βœ… Successfully processed {len([f for f in files if not any(f.name in skip for skip in skipped_files)])} files on ZeroGPU H200:\n"
result += f"πŸ“„ Total chunks indexed: {len(all_documents)}\n"
result += f"πŸ” Documents processed:\n"
for file_info in processed_files:
result += f" β€’ {file_info}\n"
if skipped_files:
result += f"\n⚠️ Skipped files:\n"
for skip_info in skipped_files:
result += f" β€’ {skip_info}\n"
result += f"\nπŸŽ‰ Document index ready for search!"
return result
except Exception as e:
return f"❌ Error processing documents: {str(e)}\n\nPlease check your files and try again."
# ===== SEARCH FUNCTION =====
@spaces.GPU(duration=60) # 1 minute for search
def search_documents(query: str, k: int = 5, show_chunks: bool = True) -> str:
"""Search documents using PyLate on ZeroGPU."""
global model, retriever, metadata_db
if not model or not retriever:
return "❌ Please initialize PyLate and process documents first!"
if not query.strip():
return "❌ Please enter a search query!"
try:
# Encode query on GPU
query_embedding = model.encode([query], is_query=True)
# Search
results = retriever.retrieve(query_embedding, k=k)[0]
if not results:
return "πŸ” No results found for your query.\n\nTry:\nβ€’ Different keywords\nβ€’ Broader search terms\nβ€’ Check if documents were processed correctly"
# Format results with metadata
formatted_results = [f"πŸ” **Search Results for:** '{query}' (powered by ZeroGPU H200)\n"]
for i, result in enumerate(results):
doc_id = result['id']
score = result['score']
# Get metadata
metadata = get_document_metadata(doc_id)
formatted_results.append(f"## Result {i+1} (Relevance: {score:.3f})")
formatted_results.append(
f"**πŸ“„ File:** {metadata.get('filename', 'Unknown')}")
formatted_results.append(
f"**πŸ“‘ Chunk:** {metadata.get('chunk_index', 0) + 1}/{metadata.get('total_chunks', 1)}")
if show_chunks:
text = metadata.get('original_text', '')
if len(text) > 400:
preview = text[:400] + "..."
else:
preview = text
formatted_results.append(f"**πŸ’¬ Text:** {preview}")
formatted_results.append("---")
formatted_results.append(f"\n🎯 Found {len(results)} relevant results using ColBERT semantic search")
return "\n".join(formatted_results)
except Exception as e:
return f"❌ Error searching: {str(e)}\n\nPlease try again or check if PyLate is properly initialized."
# ===== GRADIO INTERFACE =====
def create_interface():
"""Create the Gradio interface for ZeroGPU."""
with gr.Blocks(title="PyLate ZeroGPU Document Search", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# πŸš€ PyLate ZeroGPU Document Search
### Powered by ColBERT and NVIDIA H200 (70GB VRAM)
Upload documents, process them with PyLate on ZeroGPU, and perform lightning-fast semantic search!
**πŸ”₯ ZeroGPU Features:**
- 🎯 NVIDIA H200 GPU with 70GB VRAM
- ⚑ Dynamic GPU allocation (only when needed)
- πŸ†“ Free for HF Pro subscribers
- πŸš€ Optimized for PyTorch/ColBERT workloads
- πŸ”„ Automatic package installation
""")
# Status indicator
with gr.Row():
gr.Markdown(f"""
**πŸ“Š System Status:**
- βœ… PyLate: Ready
- βœ… Document Processing: {"PDF βœ…" if fitz else "PDF ❌"} | {"DOCX βœ…" if docx else "DOCX ❌"} | TXT βœ…
- βœ… ZeroGPU: Available
""")
with gr.Tab("πŸš€ Setup"):
gr.Markdown("### Initialize PyLate System on ZeroGPU H200")
model_choice = gr.Dropdown(
choices=[
"colbert-ir/colbertv2.0",
"sentence-transformers/all-MiniLM-L6-v2"
],
value="colbert-ir/colbertv2.0",
label="Select ColBERT Model",
info="ColBERT v2.0 is recommended for best performance"
)
init_btn = gr.Button("πŸš€ Initialize PyLate on ZeroGPU", variant="primary", size="lg")
init_status = gr.Textbox(label="Initialization Status", lines=6, max_lines=10)
init_btn.click(
initialize_pylate,
inputs=model_choice,
outputs=init_status
)
with gr.Tab("πŸ“„ Document Upload"):
gr.Markdown("### Upload and Process Documents on H200 GPU")
with gr.Row():
with gr.Column():
file_upload = gr.File(
file_count="multiple",
file_types=[".pdf", ".docx", ".txt"],
label="Upload Documents",
info="Supported: PDF, DOCX, TXT files"
)
with gr.Row():
chunk_size = gr.Slider(
minimum=500,
maximum=3000,
value=1000,
step=100,
label="Chunk Size (characters)",
info="Larger chunks = more context, smaller chunks = more precise"
)
overlap = gr.Slider(
minimum=0,
maximum=500,
value=100,
step=50,
label="Chunk Overlap (characters)",
info="Overlap helps maintain context between chunks"
)
process_btn = gr.Button(
"⚑ Process Documents on ZeroGPU", variant="primary", size="lg")
with gr.Column():
process_status = gr.Textbox(
label="Processing Status",
lines=15,
max_lines=20,
info="Processing status and results will appear here"
)
process_btn.click(
process_documents,
inputs=[file_upload, chunk_size, overlap],
outputs=process_status
)
with gr.Tab("πŸ” Search"):
gr.Markdown("### Search Your Documents with H200 Power")
with gr.Row():
with gr.Column():
search_query = gr.Textbox(
label="Search Query",
placeholder="Enter your search query... (e.g., 'machine learning algorithms', 'financial projections')",
lines=2,
info="Use natural language - ColBERT understands semantic meaning"
)
with gr.Row():
num_results = gr.Slider(
minimum=1,
maximum=20,
value=5,
step=1,
label="Number of Results",
info="How many relevant chunks to return"
)
show_chunks = gr.Checkbox(
value=True,
label="Show Text Chunks",
info="Display the actual text content"
)
search_btn = gr.Button("πŸ” Search with ZeroGPU", variant="primary", size="lg")
with gr.Column():
search_results = gr.Textbox(
label="Search Results",
lines=18,
max_lines=25,
info="Semantic search results will appear here"
)
search_btn.click(
search_documents,
inputs=[search_query, num_results, show_chunks],
outputs=search_results
)
with gr.Tab("ℹ️ ZeroGPU Info"):
gr.Markdown("""
### About ZeroGPU PyLate Search
**πŸ”₯ Powered by NVIDIA H200 Tensor Core GPU**
#### πŸš€ ZeroGPU Features:
- **70GB HBM3 Memory** - Massive capacity for large document collections
- **Dynamic Allocation** - GPU assigned only when functions need it
- **Optimized for PyTorch** - Perfect for ColBERT/PyLate workloads
- **Free for Pro Users** - No additional charges beyond HF Pro
- **Auto Scaling** - Efficient resource usage and queue management
#### 🧠 How ColBERT Works:
1. **Late Interaction** - Processes queries and documents separately
2. **Token-level Matching** - Fine-grained semantic understanding
3. **Efficient Retrieval** - Fast search with high-quality results
4. **GPU Acceleration** - Leverages H200 for rapid inference
#### πŸ“Š Performance Benefits:
- **10-100x faster** than CPU-based search
- **Large batch processing** - 32+ documents simultaneously
- **Real-time search** - Sub-second query responses
- **Massive scale** - 70GB VRAM handles huge document sets
#### πŸ› οΈ Technical Details:
- **Runtime Package Installation** - Automatically installs dependencies
- **Gradio SDK Required** - ZeroGPU doesn't support Docker
- **Smart Chunking** - Intelligent text segmentation with overlap
- **Metadata Tracking** - SQLite database for chunk information
#### 🎯 Usage Tips:
1. **Initialize first** - Required before processing documents
2. **Natural language queries** - ColBERT understands meaning, not just keywords
3. **Adjust chunk size** - Larger for context, smaller for precision
4. **Multiple file types** - Mix PDFs, DOCX, and TXT files
5. **Semantic search** - Try "concepts similar to X" type queries
#### πŸ”’ Privacy & Security:
- Documents processed in-memory only
- No permanent storage of your content
- Processing happens on HF infrastructure
- Automatic cleanup after session ends
---
**Built with ❀️ using:**
- πŸ€– PyLate & ColBERT for semantic search
- ⚑ ZeroGPU H200 for GPU acceleration
- 🎨 Gradio for the interface
- 🐍 Python ecosystem for document processing
""")
return demo
# ===== MAIN =====
if __name__ == "__main__":
print("πŸŽ‰ Launching PyLate ZeroGPU Document Search interface...")
# Check if running on ZeroGPU
if torch.cuda.is_available():
print(f"πŸ”₯ GPU detected: {torch.cuda.get_device_name()}")
else:
print("πŸ’» Running on CPU (GPU will be allocated when @spaces.GPU functions are called)")
demo = create_interface()
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True
)