gabehubner's picture
working attribution mechanism
f6f3371
raw
history blame
4.84 kB
from ddpg import Agent
import gymnasium as gym
import numpy as np
import matplotlib.pyplot as plt
import torch
from captum.attr import (IntegratedGradients)
class TrainingLoop:
def __init__(self, env_spec, output_path='./output/', seed=0, **kwargs):
assert env_spec in gym.envs.registry.keys()
defaults = {
"continuous": True,
"gravity": -10.0,
"render_mode": None
}
defaults.update(**kwargs)
self.env = gym.make(
env_spec,
**defaults
)
torch.manual_seed(seed)
self.agent = None
self.output_path = output_path
# TODO: spec-to-hyperparameters look-up
def create_agent(self, alpha=0.000025, beta=0.00025, input_dims=[8], tau=0.001, batch_size=64, layer1_size=400, layer2_size=300, n_actions=4):
self.agent = Agent(alpha=alpha, beta=beta, input_dims=input_dims, tau=tau, env=self.env, batch_size=batch_size, layer1_size=layer1_size, layer2_size=layer2_size, n_actions=n_actions)
def train(self):
assert self.agent is not None
self.agent.load_models()
score_history = []
for i in range(1000):
done = False
score = 0
obs, _ = self.env.reset()
while not done:
act = self.agent.choose_action(obs)
new_state, reward, terminated, truncated, info = self.env.step(act)
done = terminated or truncated
self.agent.remember(obs, act, reward, new_state, int(done))
self.agent.learn()
score += reward
obs = new_state
score_history.append(score)
print("episode", i, "score %.2f" % score, "100 game average %.2f" % np.mean(score_history[-100:]))
if i % 25 == 0:
self.agent.save_models()
self.env.close()
def load_trained(self):
assert self.agent is not None
self.agent.load_models()
score_history = []
for i in range(50):
done = False
score = 0
obs, _ = self.env.reset()
while not done:
act = self.agent.choose_action(obs)
new_state, reward, terminated, truncated, info = self.env.step(act)
done = terminated or truncated
score += reward
obs = new_state
score_history.append(score)
print("episode", i, "score %.2f" % score, "100 game average %.2f" % np.mean(score_history[-100:]))
self.env.close()
# Model Explainability
from captum.attr import (IntegratedGradients)
def _collect_running_baseline_average(self, num_iterations: int) -> torch.Tensor:
assert self.agent is not None
print("--------- Collecting running baseline average ----------")
self.agent.load_models()
sum_obs = torch.zeros(8)
for i in range(num_iterations):
done = False
score = 0
obs, _ = self.env.reset()
sum_obs += obs
# print(f"Baseline on interation #{i}: {obs}")
while not done:
act = self.agent.choose_action(obs, baseline=None)
new_state, reward, terminated, truncated, info = self.env.step(act)
done = terminated or truncated
score += reward
obs = new_state
print(f"Baseline collected: {sum_obs / num_iterations}")
self.env.close()
return sum_obs / num_iterations
def explain_trained(self, option: str, num_iterations :int = 10) -> None:
assert self.agent is not None
baseline_options = {
"1": torch.zeros(8),
"2": self._collect_running_baseline_average(num_iterations),
}
baseline = baseline_options[option]
print("\n\n\n\n--------- Performing Attributions -----------")
self.agent.load_models()
print(self.agent.actor)
ig = IntegratedGradients(self.agent.actor)
self.agent.ig = ig
score_history = []
for i in range(50):
done = False
score = 0
obs, _ = self.env.reset()
while not done:
act = self.agent.choose_action(observation=obs, baseline=baseline)
new_state, reward, terminated, truncated, info = self.env.step(act)
done = terminated or truncated
score += reward
obs = new_state
score_history.append(score)
print("episode", i, "score %.2f" % score, "100 game average %.2f" % np.mean(score_history[-100:]))
self.env.close()
return self.agent.attributions