Spaces:
Sleeping
Sleeping
File size: 8,277 Bytes
12ac236 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# -*- coding: utf-8 -*-
"""
Created on Sat Dec 3 18:31:26 2022
@author: gabri
"""
import numpy as np
import tensorflow as tf
import gradio as gr
from huggingface_hub import from_pretrained_keras
import cv2
import requests
from PIL import Image
import matplotlib.cm as cm
# import matplotlib.pyplot as plt
models_links = {
'xception':r'https://huggingface.co/gabri14el/grapevine_classification/resolve/main/experimentos/classificacao/Experimento%205/pesos.h5',
'resnet':r'https://huggingface.co/gabri14el/grapevine_classification/resolve/main/experimentos/classificacao/Experimento%209/pesos.h5',
'efficientnet':'https://huggingface.co/gabri14el/grapevine_classification/resolve/main/experimentos/classificacao/Experimento%2010/pesos.h5'}
model_weights = {
}
model_last_convolutional_layer = {
'xception':'block14_sepconv2_act',
'resnet':'conv5_block3_3_conv',
'efficientnet':'top_conv'}
classes = ['Códega', 'Moscatel Galego', 'Rabigato', 'Tinta Roriz', 'Tinto Cao', 'Touriga Nacional']
# functions for inference
target_size_dimension = 300
def define_model(model):
weights = get_weights(model)
if model == 'efficientnet':
preprocessing_function=tf.keras.applications.efficientnet.preprocess_input
model = tf.keras.applications.EfficientNetB3(
include_top=False,
input_shape= (target_size_dimension, target_size_dimension, 3),
weights='imagenet',
pooling='avg'
)
elif model == 'resnet':
preprocessing_function=tf.keras.applications.resnet_v2.preprocess_input
model = tf.keras.applications.resnet_v2.ResNet101V2(
include_top=False,
input_shape= (target_size_dimension, target_size_dimension, 3),
weights='imagenet',
pooling='avg'
)
else:
preprocessing_function=tf.keras.applications.xception.preprocess_input
model = tf.keras.applications.Xception(
include_top=False,
input_shape= (target_size_dimension, target_size_dimension, 3),
weights='imagenet',
pooling='avg'
)
x = tf.keras.layers.Dense(512, activation='relu')(model.output)
x = tf.keras.layers.Dropout(0.25)(x)
x = tf.keras.layers.Dense(512, activation='relu')(x)
x = tf.keras.layers.Dropout(0.25)(x)
output = tf.keras.layers.Dense(6, activation='softmax')(x)
nmodel = tf.keras.models.Model(model.input, output)
nmodel.load_weights(weights)
return preprocessing_function, nmodel
def get_weights(model):
if not model in model_weights:
r = requests.get(models_links[model], allow_redirects=True)
open(model+'.h5', 'wb').write(r.content)
model_weights[model] = model+'.h5'
return model_weights[model]
def get_img_array(img_path, size, expand=True):
# `img` is a PIL image of size 299x299
img = tf.keras.preprocessing.image.load_img(img_path, target_size=size)
# `array` is a float32 Numpy array of shape (299, 299, 3)
array = tf.keras.preprocessing.image.img_to_array(img)
# We add a dimension to transform our array into a "batch"
# of size (1, 299, 299, 3)
if expand:
array = np.expand_dims(array, axis=0)
return array
def make_gradcam_heatmap(img_array, grad_model, last_conv_layer_name, pred_index=None, tresh=0.1):
# First, we create a model that maps the input image to the activations
# of the last conv layer as well as the output predictions
#grad_model = tf.keras.models.Model(
#[model.inputs], [model.get_layer(last_conv_layer_name).output, model.output]
#)
# Then, we compute the gradient of the top predicted class for our input image
# with respect to the activations of the last conv layer
with tf.GradientTape() as tape:
last_conv_layer_output, preds = grad_model(img_array)
if pred_index is None:
pred_index = tf.argmax(preds[0])
class_channel = preds[:, pred_index]
# This is the gradient of the output neuron (top predicted or chosen)
# with regard to the output feature map of the last conv layer
grads = tape.gradient(class_channel, last_conv_layer_output)
# This is a vector where each entry is the mean intensity of the gradient
# over a specific feature map channel
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
# We multiply each channel in the feature map array
# by "how important this channel is" with regard to the top predicted class
# then sum all the channels to obtain the heatmap class activation
last_conv_layer_output = last_conv_layer_output[0]
heatmap = last_conv_layer_output @ pooled_grads[..., tf.newaxis]
heatmap = tf.squeeze(heatmap)
# For visualization purpose, we will also normalize the heatmap between 0 & 1
heatmap = tf.maximum(heatmap, 0) / tf.math.reduce_max(heatmap)
heatmap = heatmap.numpy()
return heatmap
def save_and_display_gradcam(img, heatmap, cam_path="cam.jpg", alpha=0.4):
# Rescale heatmap to a range 0-255
heatmap = np.uint8(255 * heatmap)
im = Image.fromarray(heatmap)
im = im.resize((img.shape[1], img.shape[0]))
im = np.asarray(im)
im = np.where(im > 0, 1, im)
# Use jet colormap to colorize heatmap
jet = cm.get_cmap("jet")
# Use RGB values of the colormap
jet_colors = jet(np.arange(256))[:, :3]
jet_heatmap = jet_colors[heatmap]
# Create an image with RGB colorized heatmap
jet_heatmap = tf.keras.preprocessing.image.array_to_img(jet_heatmap)
jet_heatmap = jet_heatmap.resize((img.shape[1], img.shape[0]))
jet_heatmap = tf.keras.preprocessing.image.img_to_array(jet_heatmap)
# Superimpose the heatmap on original image
superimposed_img = jet_heatmap * alpha + img
superimposed_img = tf.keras.preprocessing.image.array_to_img(superimposed_img)
# Save the superimposed image
#superimposed_img.save(cam_path)
# Display Grad CAM
#display(Image(cam_path))
return superimposed_img, im
def infer(model_name, input_image):
print('#$$$$$$$$$$$$$$$$$$$$$$$$$ IN INFER $$$$$$$$$$$$$$$$$$$$$$$')
print(model_name, type(input_image))
preprocess, model = define_model(model_name)
#img = get_img_array(input_image, (target_size_dimension, target_size_dimension))
img_processed = preprocess(np.expand_dims(input_image, axis=0))
predictions = model.predict(img_processed)
predictions = np.squeeze(predictions)
result = {}
for i in range(len(classes)):
result[classes[i]] = float(predictions[i])
#predictions = np.argmax(predictions) # , axis=2
#predicted_label = classes[predictions.item()]
print(input_image.shape)
model.layers[-1].activation = None
grad_model = tf.keras.models.Model([model.inputs], [model.get_layer(model_last_convolutional_layer[model_name]).output, model.output])
print(result)
heatmap = make_gradcam_heatmap(img_processed, grad_model,model_last_convolutional_layer[model_name])
heat, mask = save_and_display_gradcam(input_image, heatmap)
return result, heat
gr.outputs.Image()
# get the inputs
css = css = ".output-image, .input-image, .image-preview {height: 300px !important}"
inputs = [gr.Radio(["resnet", "efficientnet", "xception"], label='Choose a model'), gr.inputs.Image(shape=(target_size_dimension, target_size_dimension), label='Select an image')]
# the app outputs two segmented images
output = [gr.outputs.Label(label="Result"), gr.outputs.Image(type="numpy", label="Heatmap (Grad-CAM)")]
# it's good practice to pass examples, description and a title to guide users
examples = [["./content/examples/Frog.jpg"], ["./content/examples/Truck.jpg"]]
title = "Grapevine image classification"
description = "Upload an image to classify it. The allowed classes are - Códega, Moscatel Galego, Rabigato, Tinta Roriz, Tinto Cao, Touriga Nacional <p><b>Space author: Gabriel Carneiro</b> <br><b> [email protected] </b> </p>"
gr_interface = gr.Interface(infer, inputs, output, allow_flagging=False, analytics_enabled=False, css=css, title=title, description=description).launch(enable_queue=True, debug=False)
#gr_interface.launch() |