Spaces:
Runtime error
Runtime error
File size: 951 Bytes
3f8d76d 9d5ed04 410b92f c015c4c aef2f7d c015c4c d5a6d18 3f8d76d c015c4c c6e4955 c015c4c d5a6d18 698a370 c015c4c c6e4955 3f8d76d c6e4955 3f8d76d c6e4955 0ee5810 aef2f7d c6e4955 aef2f7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import yaml
from model import Summarization
import pandas as pd
def train_model():
"""
Train the model
"""
with open("model_params.yml") as f:
params = yaml.safe_load(f)
# Load the data
train_df = pd.read_csv("data/processed/train.csv")
eval_df = pd.read_csv("data/processed/validation.csv")
train_df = train_df.sample(random_state=1)
eval_df = eval_df.sample(random_state=1)
model = Summarization()
model.from_pretrained(
model_type=params["model_type"], model_name=params["model_name"]
)
model.train(
train_df=train_df,
eval_df=eval_df,
batch_size=params["batch_size"],
max_epochs=params["epochs"],
use_gpu=params["use_gpu"],
learning_rate=float(params["learning_rate"]),
num_workers=int(params["num_workers"]),
)
model.save_model(model_dir=params["model_dir"])
if __name__ == "__main__":
train_model()
|