Spaces:
Runtime error
Runtime error
File size: 3,981 Bytes
1c82f95 3c44515 7512014 1c82f95 3341ae8 1c82f95 f0f7dee 0842de0 a2753ad f871a4a a6aadaa 2f1ac21 67b67ae 524a321 cbfbfd6 711de5c cf08949 a36ddef 5c3219c 9ba1f65 a36ddef 9ba1f65 a36ddef b82b9fe a36ddef 8e600eb 9ba1f65 9c1a43a 9ba1f65 794fce7 a36ddef ed0582f 474a97c 02bf6f1 9ba1f65 6d6b899 9ba1f65 0862b3b 76dcc01 bac2aa8 40fa062 1087a31 9ba1f65 40fa062 9ba1f65 40fa062 2f983d0 9ba1f65 40fa062 9ba1f65 40fa062 e824a15 9ba1f65 9f2823c 9ba1f65 9f2823c e33c23a 9ba1f65 9f2823c 9ba1f65 9f2823c c3d049e 9ba1f65 9f2823c 9ba1f65 9f2823c 0842de0 7958ed1 0842de0 7958ed1 0842de0 7958ed1 0842de0 7958ed1 0842de0 7958ed1 0842de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
title: T5S
emoji: π―
colorFrom: yellow
colorTo: red
sdk: streamlit
app_file: src/visualization/visualize.py
pinned: false
---
<h1 align="center">t5s</h1>
T5 Summarisation Using Pytorch Lightning
[](https://pypi.org/project/t5s/)
[](https://pepy.tech/project/t5s)
[](https://github.com/psf/black)
[](https://huggingface.co/spaces/gagan3012/summarization)
[](https://colab.research.google.com/github/gagan3012/summarization/blob/master/notebooks/t5s.ipynb)
## Usage
To use and run the DVC pipeline install the `t5s` package
```
pip install t5s
```
Firstly we need to clone the repo containing the code so we can do that using:
```
t5s clone
```
We would then have to create the required directories to run the pipeline
```
t5s dirs
```
Then we need to pull the models from DVC
```
t5s pull
```
Now to run the training pipeline we can run:
```
t5s run
```
Finally to push the model to DVC
```
t5s push
```
To push this model to HuggingFace Hub for inference you can run:
```
t5s push_to_hf_hub
```
Next if we would like to test the model and visualise the results we can run:
```
t5s visualize
```
And this would create a streamlit app for testing
Project Organization
------------
βββ LICENSE
βββ Makefile <- Makefile with commands like `make dirs` or `make clean`
βββ README.md <- The top-level README for developers using this project.
βββ data
βΒ Β βββ processed <- The final, canonical data sets for modeling.
βΒ Β βββ raw <- The original, immutable data dump.
β
βββ models <- Trained and serialized models, model predictions, or model summaries
β
βββ notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
β the creator's initials, and a short `-` delimited description, e.g.
β `1.0-jqp-initial-data-exploration`.
βββ references <- Data dictionaries, manuals, and all other explanatory materials.
β
βββ reports <- Generated analysis as HTML, PDF, LaTeX, etc.
βΒ Β βββ metrics.txt <- Relevant metrics after evaluating the model.
βΒ Β βββ training_metrics.txt <- Relevant metrics from training the model.
β
βββ requirements.txt <- The requirements file for reproducing the analysis environment
β
βββ setup.py <- makes project pip installable (pip install -e .) so src can be imported
βββ src <- Source code for use in this project.
βΒ Β βββ __init__.py <- Makes src a Python module
β β
βΒ Β βββ data <- Scripts to download or generate data
βΒ Β βΒ Β βββ make_dataset.py
βΒ Β βΒ Β βββ process_data.py
β β
βΒ Β βββ models <- Scripts to train models
βΒ Β βΒ Β βββ predict_model.py
βΒ Β βΒ Β βββ train_model.py
βΒ Β βΒ Β βββ evaluate_model.py
βΒ Β βΒ Β βββ model.py
β β
βΒ Β βββ visualization <- Scripts to create exploratory and results oriented visualizations
βΒ Β βββ visualize.py
β
βββ tox.ini <- tox file with settings for running tox; see tox.testrun.org
βββ data.dvc <- Traing a model on the processed data.
--------
|