File size: 6,019 Bytes
df9a42c
 
33eec4d
df9a42c
 
 
cb54dbf
12f1cb0
c218419
 
 
df9a42c
c218419
 
 
df9a42c
c218419
 
 
df9a42c
f7fc638
704ef72
 
 
65363f9
5d7d48b
 
65363f9
bd401d6
5d7d48b
 
 
bd401d6
20e6100
 
 
572a1b8
f49c162
eced0dd
 
 
8c37686
 
 
5d7d48b
d147f19
 
01dffc6
965337e
 
5d7d48b
 
 
 
 
e172fe0
 
01dffc6
5c7f8ce
 
c218419
 
dbb915b
c218419
df9a42c
c218419
 
 
df9a42c
c218419
 
 
df9a42c
c218419
 
 
5d7d48b
c218419
df9a42c
c218419
 
 
df9a42c
c218419
 
 
df9a42c
c218419
df9a42c
c218419
 
 
5d7d48b
 
 
 
 
 
 
df9a42c
 
 
 
 
 
 
 
 
 
c218419
 
 
 
 
 
 
 
 
 
 
5d7d48b
c218419
5d7d48b
c218419
 
a598c32
d846f4a
38cf30c
79390b9
d4ff594
5d7d48b
 
f49c162
d4ff594
5d7d48b
f49c162
 
d4ff594
f49c162
d4ff594
f49c162
 
d4ff594
f49c162
d4ff594
f49c162
d4ff594
f49c162
d4ff594
f49c162
d4ff594
5d7d48b
 
f0505a0
c218419
6a640f3
d483016
 
763abdb
ba6e3c5
763abdb
df9a42c
 
f2606f8
 
a94f1fc
 
73dd1a5
279dcba
067d38d
b82f5d2
2ec127a
 
 
346a532
 
ab59105
 
2fca2c2
 
778a5b6
 
e97ef55
d2a76b6
198680c
ff37c40
df9a42c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import argparse
import os
import pprint
import subprocess
import sys

import yaml

arg_parser = argparse.ArgumentParser(
    description="T5 Summarisation Using Pytorch Lightning", prog="t5s"
)
# Command choice
command_subparser = arg_parser.add_subparsers(
    dest="command", help="command (refer commands section in documentation)"
)

parser_req = command_subparser.add_parser(
    "requirements", help="Install Python Dependencies."
)

parser_start = command_subparser.add_parser("start", help="Define parameters")
parser_start.add_argument(
    "-d",
    "--dataset",
    default="cnn_dailymail",
    help="Enter the name of the dataset to be used",
    type=str,
)

parser_start.add_argument(
    "-s", "--split", default=0.001, help="Enter the split required", type=float
)

parser_start.add_argument(
    "-n", "--name", default="summarsiation", help="Enter the name of the model"
)
parser_start.add_argument(
    "-mt", "--model_type", default="t5", help="Enter the model type", type=str
)
parser_start.add_argument(
    "-m",
    "--model_name",
    default="t5-base",
    help="Enter the model to be used eg t5-base",
    type=str,
)
parser_start.add_argument(
    "-e", "--epochs", default=5, help="Enter the number of epochs", type=int
)
parser_start.add_argument(
    "-lr",
    "--learning-rate",
    default=0.0001,
    help="Enter the number of epochs",
    type=float,
)
parser_start.add_argument(
    "-b", "--batch-size", default=2, help="Enter the number of batches", type=int
)

parser_dirs = command_subparser.add_parser(
    "dirs",
    help="Create directories that are ignored by git but required for the project",
)

parser_push = command_subparser.add_parser(
    "push", help="Upload Data to default DVC remote"
)

parser_pull = command_subparser.add_parser(
    "pull", help="Download Data from default DVC remote"
)

parser_run = command_subparser.add_parser(
    "run",
    help="run the DVC pipeline - recompute any modified outputs such as "
    "processed data or trained models",
)

parser_visualize = command_subparser.add_parser(
    "visualize", help="run the visualization using Streamlit"
)

parser_upload = command_subparser.add_parser(
    "upload", help="push the trained model to HF model hub"
)

parser_lint = command_subparser.add_parser("lint", help=" Lint using flake8")

parser_clone = command_subparser.add_parser(
    "clone", help="Clone the T5 summarisation repo"
)
parser_clone.add_argument(
    "-u",
    "--username",
    help="Enter the your DAGsHub username that you have forked the main repo with",
    default="gagan3012",
    type=str,
)


class Run(object):
    def __init__(self, arguments: dict):
        self.arguments = arguments

    def execute(self):
        arguments = self.arguments
        print(f"arguments passed: {arguments['command']}")
        # os.chdir('../')
        cmd = [
            "requirements",
            "dirs",
            "push",
            "pull",
            "run",
            "visualize",
            "upload",
            "lint",
        ]
        if arguments["command"] == "clone":
            username = arguments["username"]
            list_files = subprocess.run(
                ["git", "clone", f"https://dagshub.com/{username}/summarization.git"]
            )
            os.chdir("./summarization/")
            retval = os.getcwd()
            print(retval)
            return list_files.returncode
        elif arguments["command"] == "start":
            os.chdir("./summarization/")
            print(
                """
usage: t5s start [-h] [-d DATASET] [-s SPLIT] [-n NAME] [-mt MODEL_TYPE]
                 [-m MODEL_NAME] [-e EPOCHS] [-lr LEARNING_RATE]
                 [-b BATCH_SIZE]                 
-h, --help            show this help message and exit
-d DATASET, --dataset DATASET
                        Enter the name of the dataset to be used
-s SPLIT, --split SPLIT
                        Enter the split required
-n NAME, --name NAME  Enter the name of the model
-mt MODEL_TYPE, --model_type MODEL_TYPE
                        Enter the model type
-m MODEL_NAME, --model_name MODEL_NAME
                        Enter the model to be used eg t5-base
-e EPOCHS, --epochs EPOCHS
                        Enter the number of epochs
-lr LEARNING_RATE, --learning-rate LEARNING_RATE
                        Enter the number of epochs
-b BATCH_SIZE, --batch-size BATCH_SIZE
                        Enter the number of batches
            """
            )
            start(arguments=arguments)
        elif arguments["command"] in cmd:
            os.chdir("./summarization/")
            list_files = subprocess.run(["make", arguments["command"]])
            return list_files.returncode
        else:
            print("Command not supported")
            raise Exception


def start(arguments):
    data_params = {"data": arguments["dataset"], "split": arguments["split"]}
    model_params = {
        "name": arguments["name"],
        "model_type": arguments["model_type"],
        "model_name": arguments["model_name"],
        "epochs": arguments["epochs"],
        "learning_rate": arguments["learning_rate"],
        "batch_size": arguments["batch_size"],
    }
    with open("data_params.yml", "w") as f:
        yaml.dump(data_params, f)
    with open("model_params.yml") as f:
        newdct = yaml.safe_load(f)
    newdct.update(model_params)
    with open("model_params.yml", "w") as f:
        yaml.dump(newdct, f)
    dicts = {}
    dicts.update(newdct)
    dicts.update(data_params)
    pprint.pprint("Final parameters for the run are: {}".format(dicts))


def parse_args(args):
    arguments = vars(arg_parser.parse_args(args=args or ["--help"]))
    return arguments


def main(args=None):
    if args is None:
        args = sys.argv[1:]
    parsed_args = parse_args(args=args)
    try:
        result = Run(arguments=parsed_args).execute()
    except Exception as e:
        print(str(e))
        result = 1
    sys.exit(result)


if __name__ == "__main__":
    main()