summarization / README.md
gagan3012's picture
Update README.md
9f2823c
|
raw
history blame
4.67 kB
metadata
title: T5S
emoji: πŸ’―
colorFrom: yellow
colorTo: red
sdk: streamlit
app_file: src/visualization/visualize.py
pinned: false

t5s

T5 Summarisation Using Pytorch Lightning

pypi Version Downloads Code style: black Streamlit App Open In Colab

Usage

To use and run the DVC pipeline install the t5s package

pip install t5s

Firstly we need to clone the repo containing the code so we can do that using:

t5s clone 

We would then have to create the required directories to run the pipeline

t5s dirs

Then we need to pull the models from DVC

t5s pull

Now to run the training pipeline we can run:

t5s run

Finally to push the model to DVC

t5s push

To push this model to HuggingFace Hub for inference you can run:

t5s push_to_hf_hub

Next if we would like to test the model and visualise the results we can run:

t5s visualize

And this would create a streamlit app for testing

Instructions

  1. Clone the repo.
  2. Edit the params.yml to change the parameters to train the model.
  3. Run make dirs to create the missing parts of the directory structure described below.
  4. Optional: Run make virtualenv to create a python virtual environment. Skip if using conda or some other env manager.
    1. Run source env/bin/activate to activate the virtualenv.
  5. Run make requirements to install required python packages.
  6. Process your data, train and evaluate your model using make run
  7. When you're happy with the result, commit files (including .dvc files) to git.

Project Organization

β”œβ”€β”€ LICENSE
β”œβ”€β”€ Makefile           <- Makefile with commands like `make dirs` or `make clean`
β”œβ”€β”€ README.md          <- The top-level README for developers using this project.
β”œβ”€β”€ data
β”‚   β”œβ”€β”€ processed      <- The final, canonical data sets for modeling.
β”‚   └── raw            <- The original, immutable data dump.
β”‚
β”œβ”€β”€ models             <- Trained and serialized models, model predictions, or model summaries
β”‚
β”œβ”€β”€ notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
β”‚                         the creator's initials, and a short `-` delimited description, e.g.
β”‚                         `1.0-jqp-initial-data-exploration`.
β”œβ”€β”€ references         <- Data dictionaries, manuals, and all other explanatory materials.
β”‚
β”œβ”€β”€ reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
β”‚   └── metrics.txt    <- Relevant metrics after evaluating the model.
β”‚   └── training_metrics.txt    <- Relevant metrics from training the model.
β”‚
β”œβ”€β”€ requirements.txt   <- The requirements file for reproducing the analysis environment
β”‚
β”œβ”€β”€ setup.py           <- makes project pip installable (pip install -e .) so src can be imported
β”œβ”€β”€ src                <- Source code for use in this project.
β”‚   β”œβ”€β”€ __init__.py    <- Makes src a Python module
β”‚   β”‚
β”‚   β”œβ”€β”€ data           <- Scripts to download or generate data
β”‚   β”‚   └── make_dataset.py
β”‚   β”‚   └── process_data.py
β”‚   β”‚
β”‚   β”œβ”€β”€ models         <- Scripts to train models 
β”‚   β”‚   β”œβ”€β”€ predict_model.py
β”‚   β”‚   └── train_model.py
β”‚   β”‚   └── evaluate_model.py
β”‚   β”‚   └── model.py
β”‚   β”‚
β”‚   └── visualization  <- Scripts to create exploratory and results oriented visualizations
β”‚       └── visualize.py
β”‚
β”œβ”€β”€ tox.ini            <- tox file with settings for running tox; see tox.testrun.org
└── data.dvc          <- Traing a model on the processed data.