File size: 2,678 Bytes
5514904
 
 
 
 
 
 
4f97622
5514904
 
 
d8fb0e2
5514904
 
 
 
 
e453a22
5514904
 
 
 
 
 
97047a1
5514904
97047a1
5514904
 
4f97622
5514904
97047a1
5514904
 
 
 
 
 
 
97047a1
5514904
ce33d42
5514904
 
 
 
97047a1
5514904
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
<!DOCTYPE html>
<html>
	<head>
		<link rel="stylesheet" href="file/style.css" />
		<link rel="preconnect" href="https://fonts.googleapis.com" />
		<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin />
		<link href="https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600;700&display=swap" rel="stylesheet" />
		<title><strong>HAM10000 Classification</strong></title>
	</head>
	<body>
		<div class="container">
			<h1 class="title"><strong>HAM10000 Classification</strong></h1>
			<h2 class="subtitle"><strong>Kalbe Digital Lab</strong></h2>
			<section class="overview">
				<div class="grid-container">
					<h3 class="overview-heading"><span class="vl">Overview</span></h3>
					<p class="overview-content">
						The HAM10000 Skin Cancer Classification program serves the critical purpose of categorizing skin lesions into seven distinct classes: Actinic Keratosis, Basal Cell Carcinoma, Benign Keratosis, Dermatofibroma, Melanoma, Melanocytic Nevi, and Vascular Lesion. This program is trained using a ResNet18 model.
					</p>
				</div>
				<div class="grid-container">
					<h3 class="overview-heading"><span class="vl">Dataset</span></h3>
					<div>
						<p class="overview-content">
						The program has been meticulously trained on a robust and diverse dataset, specifically <a href="https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000" target="_blank">Skin Cancer : HAM10000 Dataset.</a>. 
						<br/>
						The program has been meticulously trained on a diverse and extensive dataset, known as the HAM10000 dataset. This dataset consists of 10,015 dermatoscopic images of skin lesions, meticulously collected and manually annotated. It is a valuable resource that has played a pivotal role in training our skin cancer classification model.
						</p>
						<ul>
							<li>Objective: HAM 10000 Identification</li>
							<li>Task: Classification</li>
							<li>Modality: Colour Images</li>
						</ul>
					</div>
				</div>
				<div class="grid-container">
					<h3 class="overview-heading"><span class="vl">Model Architecture</span></h3>
					<div>
						<p class="overview-content">
							The model architecture of ResNet18 to train images for classifying skin cancer part.
						</p>
						<img class="content-image" src="file/figures/ResNet-18.png" alt="model-architecture" width="425" height="115" style="vertical-align:middle" />
					</div>
				</div>
			</section>
			<h3 class="overview-heading"><span class="vl">Demo</span></h3>
			<p class="overview-content">Please select or upload a skin cancer scan image to see the capabilities of skin part classification with this model</p>
		</div>
	</body>
</html>