MCP_HTML2JSON / web2json /ai_extractor.py
abdo-Mansour's picture
done with version 2
c67f04e
raw
history blame
20.8 kB
import os
import time
import numpy as np
from google import genai
from openai import OpenAI
import time
import random
from openai import RateLimitError
from functools import wraps
from google.genai import types
from pydantic import BaseModel
from concurrent.futures import ThreadPoolExecutor
from html_chunking import get_html_chunks
from abc import ABC, abstractmethod
from typing import List, Any, Dict, Tuple, Optional
import re
import json
from langchain_text_splitters import HTMLHeaderTextSplitter
from sentence_transformers import SentenceTransformer
class LLMClient(ABC):
"""
Abstract base class for calling LLM APIs.
"""
def __init__(self, config: dict = None):
"""
Initializes the LLMClient with a configuration dictionary.
Args:
config (dict): Configuration settings for the LLM client.
"""
self.config = config or {}
@abstractmethod
def call_api(self, prompt: str) -> str:
"""
Call the underlying LLM API with the given prompt.
Args:
prompt (str): The prompt or input text for the LLM.
Returns:
str: The response from the LLM.
"""
pass
class GeminiLLMClient(LLMClient):
"""
Concrete implementation of LLMClient for the Gemini API.
"""
def __init__(self, config: dict):
"""
Initializes the GeminiLLMClient with an API key, model name, and optional generation settings.
Args:
config (dict): Configuration containing:
- 'api_key': (optional) API key for Gemini (falls back to GEMINI_API_KEY env var)
- 'model_name': (optional) the model to use (default 'gemini-2.0-flash')
- 'generation_config': (optional) dict of GenerateContentConfig parameters
"""
api_key = config.get("api_key") or os.environ.get("GEMINI_API_KEY")
if not api_key:
raise ValueError(
"API key for Gemini must be provided in config['api_key'] or GEMINI_API_KEY env var."
)
self.client = genai.Client(api_key=api_key)
self.model_name = config.get("model_name", "gemini-2.0-flash")
# allow custom generation settings, fallback to sensible defaults
gen_conf = config.get("generation_config", {})
self.generate_config = types.GenerateContentConfig(
response_mime_type=gen_conf.get("response_mime_type", "text/plain"),
temperature=gen_conf.get("temperature"),
max_output_tokens=gen_conf.get("max_output_tokens"),
top_p=gen_conf.get("top_p"),
top_k=gen_conf.get("top_k"),
# add any other fields you want to expose
)
def call_api(self, prompt: str) -> str:
"""
Call the Gemini API with the given prompt (non-streaming).
Args:
prompt (str): The input text for the API.
Returns:
str: The generated text from the Gemini API.
"""
contents = [
types.Content(
role="user",
parts=[types.Part.from_text(text=prompt)],
)
]
# Non-streaming call returns a full response object
response = self.client.models.generate_content(
model=self.model_name,
contents=contents,
config=self.generate_config,
)
# Combine all output parts into a single string
return response.text
def extract_markdown_json(text: str) -> Optional[Dict[str, Any]]:
"""
Find the first Markdown ```json ...``` block in `text`,
parse it as JSON, and return the resulting dict.
Returns None if no valid JSON block is found.
"""
# 1) Look specifically for a ```json code fence
fence_match = re.search(
r"```json\s*(\{.*?\})\s*```",
text,
re.DOTALL | re.IGNORECASE
)
if not fence_match:
return None
json_str = fence_match.group(1)
try:
return json.loads(json_str)
except json.JSONDecodeError:
return None
def retry_on_ratelimit(max_retries=5, base_delay=1.0, max_delay=10.0):
def deco(fn):
@wraps(fn)
def wrapped(*args, **kwargs):
delay = base_delay
for attempt in range(max_retries):
try:
return fn(*args, **kwargs)
except RateLimitError:
if attempt == max_retries - 1:
# give up
raise
# back off + jitter
sleep = min(max_delay, delay) + random.uniform(0, delay)
time.sleep(sleep)
delay *= 2
# unreachable
return wrapped
return deco
class NvidiaLLMClient(LLMClient):
"""
Concrete implementation of LLMClient for the NVIDIA API (non-streaming).
"""
def __init__(self, config: dict):
"""
Initializes the NvidiaLLMClient with an API key, model name, and optional generation settings.
Args:
config (dict): Configuration containing:
- 'api_key': (optional) API key for NVIDIA (falls back to NVIDIA_API_KEY env var)
- 'model_name': (optional) the model to use (default 'google/gemma-3-1b-it')
- 'generation_config': (optional) dict of generation parameters like temperature, top_p, etc.
"""
api_key = config.get("api_key") or os.environ.get("NVIDIA_API_KEY")
if not api_key:
raise ValueError(
"API key for NVIDIA must be provided in config['api_key'] or NVIDIA_API_KEY env var."
)
self.client = OpenAI(
base_url="https://integrate.api.nvidia.com/v1",
api_key=api_key
)
self.model_name = config.get("model_name", "google/gemma-3-1b-it")
# Store generation settings with sensible defaults
gen_conf = config.get("generation_config", {})
self.temperature = gen_conf.get("temperature", 0.1)
self.top_p = gen_conf.get("top_p", 0.7)
self.max_tokens = gen_conf.get("max_tokens", 512)
def set_model(self, model_name: str):
"""
Set the model name for the NVIDIA API client.
Args:
model_name (str): The name of the model to use.
"""
self.model_name = model_name
@retry_on_ratelimit(max_retries=6, base_delay=0.5, max_delay=5.0)
def call_api(self, prompt: str) -> str:
"""
Call the NVIDIA API with the given prompt (non-streaming).
Args:
prompt (str): The input text for the API.
Returns:
str: The generated text from the NVIDIA API.
"""
response = self.client.chat.completions.create(
model=self.model_name,
messages=[{"role": "user", "content": prompt}],
temperature=self.temperature,
top_p=self.top_p,
max_tokens=self.max_tokens
# stream is omitted (defaults to False)
)
# print("DONE")
# For the standard (non-streaming) response:
# choices[0].message.content holds the generated text
return response.choices[0].message.content
def call_batch(self, prompts, max_workers=8):
"""
Parallel batch with isolated errors: each prompt that still
fails after retries will raise, but others succeed.
"""
from concurrent.futures import ThreadPoolExecutor, as_completed
results = [None] * len(prompts)
with ThreadPoolExecutor(max_workers=max_workers) as ex:
futures = {ex.submit(self.call_api, p): i for i, p in enumerate(prompts)}
for fut in as_completed(futures):
idx = futures[fut]
try:
results[idx] = fut.result()
except RateLimitError:
# You could set results[idx] = None or a default string
results[idx] = f"<failed after retries>"
return results
class AIExtractor:
def __init__(self, llm_client: LLMClient, prompt_template: str):
"""
Initializes the AIExtractor with a specific LLM client and configuration.
Args:
llm_client (LLMClient): An instance of a class that implements the LLMClient interface.
prompt_template (str): The template to use for generating prompts for the LLM.
should contain placeholders for dynamic content.
e.g., "Extract the following information: {content} based on schema: {schema}"
"""
self.llm_client = llm_client
self.prompt_template = prompt_template
def extract(self, content: str, schema: BaseModel) -> str:
"""
Extracts structured information from the given content based on the provided schema.
Args:
content (str): The raw content to extract information from.
schema (BaseModel): A Pydantic model defining the structure of the expected output.
Returns:
str: The structured JSON object as a string.
"""
prompt = self.prompt_template.format(content=content, schema=schema.model_json_schema())
# print(f"Generated prompt: {prompt}")
response = self.llm_client.call_api(prompt)
return response
class LLMClassifierExtractor(AIExtractor):
"""
Extractor that uses an LLM to classify and extract structured information from text content.
This class is designed to handle classification tasks where the LLM generates structured output based on a provided schema.
"""
def __init__(self, llm_client: LLMClient, prompt_template: str, classifier_prompt: str, ):
"""
Initializes the LLMClassifierExtractor with an LLM client and a prompt template.
Args:
llm_client (LLMClient): An instance of a class that implements the LLMClient interface.
prompt_template (str): The template to use for generating prompts for the LLM.
"""
super().__init__(llm_client, prompt_template)
self.classifier_prompt = classifier_prompt
def chunk_content(self, content: str , max_tokens: int = 500, is_clean: bool = True) -> List[str]:
"""
Splits the content into manageable chunks for processing.
Args:
content (str): The raw content to be chunked.
Returns:
List[str]: A list of text chunks.
"""
# Use the get_html_chunks function to split the content into chunks
return get_html_chunks(html=content, max_tokens=max_tokens, is_clean_html=is_clean, attr_cutoff_len=5)
def classify_chunks(self, chunks: List[str], schema: BaseModel) -> List[Dict[str, Any]]:
"""
Classifies each chunk using the LLM based on the provided schema.
Args:
chunks (List[str]): A list of text chunks to classify.
schema (BaseModel): A Pydantic model defining the structure of the expected output.
Returns:
List[Dict[str, Any]]: A list of dictionaries containing classified information.
"""
prompts = [self.classifier_prompt.format(content=chunk, schema=schema.model_json_schema()) for chunk in chunks]
classified_chunks = []
responses = self.llm_client.call_batch(prompts)
for response in responses:
# extract the json from the response
json_data = extract_markdown_json(response)
if json_data:
classified_chunks.append(json_data)
else:
classified_chunks.append({
"error": "Failed to extract JSON from response",
"relevant": 1,
})
return classified_chunks
def extract(self, content: str, schema: BaseModel) -> str:
"""
Extracts structured information from the given content based on the provided schema.
Args:
content (str): The raw content to extract information from.
schema (BaseModel): A Pydantic model defining the structure of the expected output.
Returns:
str: The structured JSON object as a string.
"""
# Chunk the HTML
chunks = self.chunk_content(content,max_tokens=1500)
print(f"Content successfully chunked into {len(chunks)} pieces.")
# Classify each chunk using the LLM
classified_chunks = self.classify_chunks(chunks, schema)
# Concatenate the positive classified chunks into a single string
print(f"Classified {classified_chunks} chunks.")
positive_chunks = []
for i, chunk in enumerate(classified_chunks):
if chunk.get("relevant", 0) > 0:
positive_chunks.append(chunks[i])
if len(positive_chunks) == 0:
positive_chunks = chunks
filtered_content = "\n\n".join(positive_chunks)
print(f"Filtered content for extraction: {filtered_content}") # Log the first 500 characters of filtered content
if not filtered_content:
print("Warning: No relevant chunks found. Returning empty response.")
return "{}"
# Generate the final prompt for extraction
prompt = self.prompt_template.format(content=filtered_content, schema=schema.model_json_schema())
print(f"Generated prompt for extraction: {prompt[:500]}...")
# Call the LLM to extract structured information
llm_response = self.llm_client.call_api(prompt)
print(f"LLM response: {llm_response[:500]}...")
# Return the structured response
if not llm_response:
print("Warning: LLM response is empty. Returning empty response.")
return "{}"
# json_response = extract_markdown_json(llm_response)
# if json_response is None:
# print("Warning: Failed to extract JSON from LLM response. Returning empty response.")
# return "{}"
return llm_response
# TODO: RAGExtractor class
class RAGExtractor(AIExtractor):
"""
RAG-enhanced extractor that uses similarity search to find relevant chunks
before performing extraction, utilizing HTML header-based chunking and SentenceTransformer embeddings.
"""
def __init__(self,
llm_client: LLMClient,
prompt_template: str,
embedding_model_path: str = "sentence-transformers/all-mpnet-base-v2",
top_k: int = 3):
"""
Initialize RAG extractor with embedding and chunking capabilities.
Args:
llm_client: LLM client for generation.
prompt_template: Template for prompts.
embedding_model_path: Path/name for the SentenceTransformer embedding model.
top_k: Number of top similar chunks to retrieve.
"""
super().__init__(llm_client, prompt_template)
self.embedding_model_path = embedding_model_path
# Initialize the SentenceTransformer model for embeddings
self.embedding_model_instance = SentenceTransformer(self.embedding_model_path)
self.top_k = top_k
@staticmethod
def _langchain_HHTS(text: str) -> List[str]:
"""
Chunks HTML text using Langchain's HTMLHeaderTextSplitter based on h1 and h2 headers.
Args:
text (str): The HTML content to chunk.
Returns:
List[str]: A list of chunked text strings (extracted from Document objects' page_content).
"""
headers_to_split_on = [
("h1", "Header 1"),
("h2", "Header 2"),
# ("h3", "Header 3"), # This header was explicitly commented out in the request
]
html_splitter = HTMLHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
return [doc.page_content for doc in html_splitter.split_text(text)]
def embed_text(self, text: str) -> np.ndarray:
"""
Generate embeddings for text using the initialized SentenceTransformer model.
Args:
text: The text string to embed.
Returns:
np.ndarray: The embedding vector for the input text as a NumPy array.
"""
try:
return self.embedding_model_instance.encode(text)
except Exception as e:
print(f"Warning: Embedding failed for text: '{text[:50]}...', using random embedding: {e}")
return None
def search_similar_chunks(self,
query: str,
chunks: List[str],
embeddings: np.ndarray) -> List[str]:
"""
Find the most similar chunks to the query within the given list of chunks
by calculating cosine similarity between their embeddings.
Args:
query (str): The query text whose embedding will be used for similarity comparison.
chunks (List[str]): A list of text chunks to search within.
embeddings (np.ndarray): Precomputed embeddings for the chunks, corresponding to the 'chunks' list.
Returns:
List[str]: A list of the 'top_k' most similar chunks to the query.
"""
query_embedding = self.embed_text(query)
similarities = []
if query_embedding.ndim > 1:
query_embedding = query_embedding.flatten()
for i, chunk_embedding in enumerate(embeddings):
if chunk_embedding.ndim > 1:
chunk_embedding = chunk_embedding.flatten()
norm_query = np.linalg.norm(query_embedding)
norm_chunk = np.linalg.norm(chunk_embedding)
if norm_query == 0 or norm_chunk == 0:
similarity = 0.0
else:
similarity = np.dot(query_embedding, chunk_embedding) / (norm_query * norm_chunk)
similarities.append((similarity, i))
similarities.sort(key=lambda x: x[0], reverse=True)
top_indices = [idx for _, idx in similarities[:self.top_k]]
return [chunks[i] for i in top_indices]
def extract(self, content: str, schema: BaseModel, query: str = None) -> str:
"""
Overrides the base AIExtractor's method to implement RAG-enhanced extraction.
This function first chunks the input HTML content, then uses a query to find
the most relevant chunks via embedding similarity, and finally sends these
relevant chunks as context to the LLM for structured information extraction.
Args:
content (str): The raw HTML content from which to extract information.
schema (BaseModel): A Pydantic model defining the desired output structure for the LLM.
query (str, optional): An optional query string to guide the retrieval of relevant chunks.
If not provided, a default query based on the schema will be used.
Returns:
str: The structured JSON object as a string, as generated by the LLM.
"""
start_time = time.time()
if not query:
query = f"Extract information based on the following JSON schema: {schema.model_json_schema()}"
print(f"No explicit query provided for retrieval. Using default: '{query[:100]}...'")
chunks = self._langchain_HHTS(content)
print(f"Content successfully chunked into {len(chunks)} pieces.")
combined_content_for_llm = ""
if not chunks:
print("Warning: No chunks were generated from the provided content. The entire original content will be sent to the LLM.")
combined_content_for_llm = content
else:
chunk_embeddings = np.array([self.embed_text(chunk) for chunk in chunks])
print(f"Generated embeddings for {len(chunks)} chunks.")
similar_chunks = self.search_similar_chunks(query, chunks, chunk_embeddings)
print(f"Retrieved {len(similar_chunks)} similar chunks based on the query.")
combined_content_for_llm = "\n\n".join(similar_chunks)
print(f"Combined content for LLM (truncated): '{combined_content_for_llm[:200]}...'")
prompt = self.prompt_template.format(content=combined_content_for_llm, schema=schema.model_json_schema())
print(f"Sending prompt to LLM (truncated): '{prompt[:500]}...'")
llm_response = self.llm_client.call_api(prompt)
execution_time = (time.time() - start_time) * 1000
print(f"Extraction process completed in {execution_time:.2f} milliseconds.")
print(f"LLM's final response: {llm_response}")
print("=" * 78)
return llm_response