class-scheduling / model /Schedule.py
garizz's picture
Upload 31 files
8e7d8ae
from .Constant import Constant
from .CourseClass import CourseClass
from .Reservation import Reservation
from .Criteria import Criteria
from collections import deque
from random import randrange
import numpy as np
# Schedule chromosome
class Schedule:
# Initializes chromosomes with configuration block (setup of chromosome)
def __init__(self, configuration):
self._configuration = configuration
# Fitness value of chromosome
self._fitness = 0
# Time-space slots, one entry represent one hour in one classroom
slots_length = Constant.DAYS_NUM * Constant.DAY_HOURS * self._configuration.numberOfRooms
self._slots = [[] for _ in range(slots_length)]
# Class table for chromosome
# Used to determine first time-space slot used by class
self._classes = {}
# Flags of class requirements satisfaction
self._criteria = np.zeros(self._configuration.numberOfCourseClasses * len(Criteria.weights), dtype=bool)
self._diversity = 0.0
self._rank = 0
self._convertedObjectives = []
self._objectives = []
def copy(self, c, setup_only):
if not setup_only:
self._configuration = c.configuration
# copy code
self._slots, self._classes = [row[:] for row in c.slots], {key: value for key, value in c.classes.items()}
# copy flags of class requirements
self._criteria = c.criteria[:]
# copy fitness
self._fitness = c.fitness
return self
return Schedule(c.configuration)
# Makes new chromosome with same setup but with randomly chosen code
def makeNewFromPrototype(self, positions = None):
# make new chromosome, copy chromosome setup
new_chromosome = self.copy(self, True)
new_chromosome_slots, new_chromosome_classes = new_chromosome._slots, new_chromosome._classes
# place classes at random position
classes = self._configuration.courseClasses
nr = self._configuration.numberOfRooms
DAYS_NUM, DAY_HOURS = Constant.DAYS_NUM, Constant.DAY_HOURS
for c in classes:
# determine random position of class
dur = c.Duration
day = randrange(DAYS_NUM)
room = randrange(nr)
time = randrange(DAY_HOURS - dur)
reservation = Reservation.getReservation(nr, day, time, room)
if positions is not None:
positions.append(day)
positions.append(room)
positions.append(time)
reservation_index = hash(reservation)
# fill time-space slots, for each hour of class
for i in range(dur - 1, -1, -1):
new_chromosome_slots[reservation_index + i].append(c)
# insert in class table of chromosome
new_chromosome_classes[c] = reservation_index
new_chromosome.calculateFitness()
return new_chromosome
# Performs crossover operation using to chromosomes and returns pointer to offspring
def crossover(self, parent, numberOfCrossoverPoints, crossoverProbability):
# check probability of crossover operation
if randrange(100) > crossoverProbability:
# no crossover, just copy first parent
return self.copy(self, False)
# new chromosome object, copy chromosome setup
n = self.copy(self, True)
n_classes, n_slots = n._classes, n._slots
classes = self._classes
course_classes = tuple(classes.keys())
parent_classes = parent.classes
parent_course_classes = tuple(parent.classes.keys())
# number of classes
size = len(classes)
cp = size * [False]
# determine crossover point (randomly)
for i in range(numberOfCrossoverPoints, 0, -1):
check_point = False
while not check_point:
p = randrange(size)
if not cp[p]:
cp[p] = check_point = True
# make new code by combining parent codes
first = randrange(2) == 0
for i in range(size):
if first:
course_class = course_classes[i]
dur = course_class.Duration
reservation_index = classes[course_class]
# insert class from first parent into new chromosome's class table
n_classes[course_class] = reservation_index
# all time-space slots of class are copied
for j in range(dur - 1, -1, -1):
n_slots[reservation_index + j].append(course_class)
else:
course_class = parent_course_classes[i]
dur = course_class.Duration
reservation_index = parent_classes[course_class]
# insert class from second parent into new chromosome's class table
n_classes[course_class] = reservation_index
# all time-space slots of class are copied
for j in range(dur - 1, -1, -1):
n_slots[reservation_index + j].append(course_class)
# crossover point
if cp[i]:
# change source chromosome
first = not first
n.calculateFitness()
# return smart pointer to offspring
return n
# Performs crossover operation using to chromosomes and returns pointer to offspring
def crossovers(self, parent, r1, r2, r3, etaCross, crossoverProbability):
# number of classes
size = len(self._classes)
jrand = randrange(size)
nr = self._configuration.numberOfRooms
DAY_HOURS, DAYS_NUM = Constant.DAY_HOURS, Constant.DAYS_NUM
# make new chromosome, copy chromosome setup
new_chromosome = self.copy(self, True)
new_chromosome_slots, new_chromosome_classes = new_chromosome._slots, new_chromosome._classes
classes = self._classes
course_classes = tuple(classes.keys())
parent_classes = parent.classes
parent_course_classes = tuple(parent.classes.keys())
for i in range(size):
if randrange(100) > crossoverProbability or i == jrand:
course_class = course_classes[i]
reservation1, reservation2 = Reservation.parse(r1.classes[course_class]), Reservation.parse(r2.classes[course_class])
reservation3 = Reservation.parse(r3.classes[course_class])
dur = course_class.Duration
day = int(reservation3.Day + etaCross * (reservation1.Day - reservation2.Day))
if day < 0:
day = 0
elif day >= DAYS_NUM:
day = DAYS_NUM - 1
room = int(reservation3.Room + etaCross * (reservation1.Room - reservation2.Room))
if room < 0:
room = 0
elif room >= nr:
room = nr - 1
time = int(reservation3.Time + etaCross * (reservation1.Time - reservation2.Time))
if time < 0:
time = 0
elif time >= (DAY_HOURS - dur):
time = DAY_HOURS - 1 - dur
reservation = Reservation.getReservation(nr, day, time, room)
reservation_index = hash(reservation)
# fill time-space slots, for each hour of class
for j in range(dur - 1, -1, -1):
new_chromosome_slots[reservation_index + j].append(course_class)
# insert in class table of chromosome
new_chromosome_classes[course_class] = reservation_index
else:
course_class = parent_course_classes[i]
dur = course_class.Duration
reservation = parent_classes[course_class]
reservation_index = hash(reservation)
# all time-space slots of class are copied
for j in range(dur - 1, -1, -1):
new_chromosome_slots[reservation_index + j].append(course_class)
# insert class from second parent into new chromosome's class table
new_chromosome_classes[course_class] = reservation_index
new_chromosome.calculateFitness()
# return smart pointer to offspring
return new_chromosome
def repair(self, cc1: CourseClass, reservation1_index: int, reservation2: Reservation):
nr = self._configuration.numberOfRooms
DAY_HOURS, DAYS_NUM = Constant.DAY_HOURS, Constant.DAYS_NUM
slots = self._slots
dur = cc1.Duration
for j in range(dur):
# remove class hour from current time-space slot
cl = slots[reservation1_index + j]
while cc1 in cl:
cl.remove(cc1)
# determine position of class randomly
if reservation2 is None:
day = randrange(DAYS_NUM)
room = randrange(nr)
time = randrange(DAY_HOURS - dur)
reservation2 = Reservation.getReservation(nr, day, time, room)
reservation2_index = hash(reservation2)
for j in range(dur):
# move class hour to new time-space slot
slots[reservation2_index + j].append(cc1)
# change entry of class table to point to new time-space slots
self._classes[cc1] = reservation2_index
# Performs mutation on chromosome
def mutation(self, mutationSize, mutationProbability):
# check probability of mutation operation
if randrange(100) > mutationProbability:
return
classes = self._classes
# number of classes
numberOfClasses = len(classes)
course_classes = tuple(classes.keys())
configuration = self._configuration
nr = configuration.numberOfRooms
# move selected number of classes at random position
for i in range(mutationSize, 0, -1):
# select ranom chromosome for movement
mpos = randrange(numberOfClasses)
# current time-space slot used by class
cc1 = course_classes[mpos]
reservation1_index = classes[cc1]
self.repair(cc1, reservation1_index, None)
self.calculateFitness()
# Calculates fitness value of chromosome
def calculateFitness(self):
# increment value when criteria violation occurs
self._objectives = np.zeros(len(Criteria.weights))
# chromosome's score
score = 0
criteria, configuration = self._criteria, self._configuration
items, slots = self._classes.items(), self._slots
numberOfRooms = configuration.numberOfRooms
DAY_HOURS, DAYS_NUM = Constant.DAY_HOURS, Constant.DAYS_NUM
daySize = DAY_HOURS * numberOfRooms
ci = 0
getRoomById = configuration.getRoomById
# check criteria and calculate scores for each class in schedule
for cc, reservation_index in items:
reservation = Reservation.parse(reservation_index)
# coordinate of time-space slot
day, time, room = reservation.Day, reservation.Time, reservation.Room
dur = cc.Duration
ro = Criteria.isRoomOverlapped(slots, reservation, dur)
# on room overlapping
criteria[ci + 0] = not ro
r = getRoomById(room)
# does current room have enough seats
criteria[ci + 1] = Criteria.isSeatEnough(r, cc)
# does current room have computers if they are required
criteria[ci + 2] = Criteria.isComputerEnough(r, cc)
# check overlapping of classes for professors
timeId = day * daySize + time
po, go = Criteria.isOverlappedProfStudentGrp(slots, cc, numberOfRooms, timeId)
# professors have no overlapping classes?
criteria[ci + 3] = not po
# student groups has no overlapping classes?
criteria[ci + 4] = not go
for i in range(len(self._objectives)):
if criteria[ci + i]:
score += 1
else:
score += Criteria.weights[i]
self._objectives[i] += 1 if Criteria.weights[i] > 0 else 2
ci += len(Criteria.weights)
# calculate fitness value based on score
self._fitness = score / len(criteria)
def getDifference(self, other):
return (self._criteria ^ other.criteria).sum()
def extractPositions(self, positions):
i = 0
items = self._classes.items()
for cc, reservation_index in items:
reservation = Reservation.parse(reservation_index)
positions[i] = reservation.Day
i += 1
positions[i] = reservation.Room
i += 1
positions[i] = reservation.Time
i += 1
def updatePositions(self, positions):
DAYS_NUM, DAY_HOURS = Constant.DAYS_NUM, Constant.DAY_HOURS
nr = self._configuration.numberOfRooms
i = 0
items = self._classes.items()
for cc, reservation1_index in items:
dur = cc.Duration
day = abs(int(positions[i]) % DAYS_NUM)
room = abs(int(positions[i + 1]) % nr)
time = abs(int(positions[i + 2]) % (DAY_HOURS - dur))
reservation2 = Reservation.getReservation(nr, day, time, room)
self.repair(cc, reservation1_index, reservation2)
positions[i] = reservation2.Day
i += 1
positions[i] = reservation2.Room
i += 1
positions[i] = reservation2.Time
i += 1
self.calculateFitness()
# Returns fitness value of chromosome
@property
def fitness(self):
return self._fitness
@property
def configuration(self):
return self._configuration
@property
# Returns reference to table of classes
def classes(self):
return self._classes
@property
# Returns array of flags of class requirements satisfaction
def criteria(self):
return self._criteria
@property
# Return reference to array of time-space slots
def slots(self):
return self._slots
@property
def diversity(self):
return self._diversity
@diversity.setter
def diversity(self, new_diversity):
self._diversity = new_diversity
@property
def rank(self):
return self._rank
@rank.setter
def rank(self, new_rank):
self._rank = new_rank
@property
def convertedObjectives(self):
return self._convertedObjectives
@property
def objectives(self):
return self._objectives
def resizeConvertedObjectives(self, numObj):
self._convertedObjectives = numObj * [0]
def clone(self):
return self.copy(self, False)
def dominates(self, other):
better = False
for f, obj in enumerate(self.objectives):
if obj > other.objectives[f]:
return False
if obj < other.objectives[f]:
better = True
return better