File size: 5,040 Bytes
c1a0d97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from dotenv import load_dotenv

load_dotenv()

api = os.getenv("groq_api_key")


from sentence_transformers import SentenceTransformer
import gradio as gr
from sklearn.metrics.pairwise import cosine_similarity
from groq import Groq

def create_metadata_embeddings():
  student="""
  Table: student
  Columns:
  - student_id: an integer representing the unique ID of a student.
  - first_name: a string containing the first name of the student.
  - last_name: a string containing the last name of the student.
  - date_of_birth: a date representing the student's birthdate.
  - email: a string for the student's email address.
  - phone_number: a string for the student's contact number.
  - major: a string representing the student's major field of study.
  - year_of_enrollment: an integer for the year the student enrolled.
  """

  employee="""
  Table: employee
  Columns:
  - employee_id: an integer representing the unique ID of an employee.
  - first_name: a string containing the first name of the employee.
  - last_name: a string containing the last name of the employee.
  - email: a string for the employee's email address.
  - department: a string for the department the employee works in.
  - position: a string representing the employee's job title.
  - salary: a float representing the employee's salary.
  - date_of_joining: a date for when the employee joined the college.
  """

  course="""
  Table: course_info
  Columns:
  - course_id: an integer representing the unique ID of the course.
  - course_name: a string containing the course's name.
  - course_code: a string for the course's unique code.
  - instructor_id: an integer for the ID of the instructor teaching the course.
  - department: a string for the department offering the course.
  - credits: an integer representing the course credits.
  - semester: a string for the semester when the course is offered.
  """

  metadata_list = [student, employee, course]

  model = SentenceTransformer('all-MiniLM-L6-v2')

  embeddings = model.encode(metadata_list)

  return embeddings,model,student,employee,course

def find_best_fit(embeddings,model,user_query,student,employee,course):
  query_embedding = model.encode([user_query])
  similarities = cosine_similarity(query_embedding, embeddings)
  best_match_table = similarities.argmax()
  if(best_match_table==0):
    table_metadata=student
  elif(best_match_table==1):
    table_metadata=employee
  else:
    table_metadata=course

  return table_metadata



def create_prompt(user_query,table_metadata):
  system_prompt="""
  You are a SQL query generator specialized in generating SELECT queries for a single table at a time. Your task is to accurately convert natural language queries into SQL SELECT statements based on the user's intent and the provided table metadata.
  Rules:
  Focus on SELECT Queries: Only generate SELECT queries. Do not generate INSERT, UPDATE, DELETE, or multi-table JOINs.
  Single Table Only: Assume all queries are related to a single table provided in the metadata. Ignore any references to other tables.
  Metadata-Based Validation: Always ensure the generated query matches the table name, columns, and data types provided in the metadata.
  User Intent: Accurately capture the user's requirements, such as filters, sorting, or aggregations, as expressed in natural language.
  SQL Syntax: Use standard SQL syntax that is compatible with most relational database systems.
  Input Format:
  User Query: The user's natural language request.
  Table Metadata: The structure of the relevant table, including the table name, column names, and data types.
  Output Format:
  SQL Query: A valid SELECT query formatted for readability.
  Do not output anything else except the SQL query.Not even a single word extra.Ouput the whole query in a single line only.
  You are ready to generate SQL queries based on the user input and table metadata.
  """


  user_prompt=f"""
  User Query: {user_query}
  Table Metadata: {table_metadata}
  """

  return system_prompt,user_prompt



def generate_output(system_prompt,user_prompt):
  client = Groq(api_key=api,)
  chat_completion = client.chat.completions.create(messages=[
    {"role": "system", "content": system_prompt},
     {"role": "user","content": user_prompt,}],model="llama3-70b-8192",)
  res = chat_completion.choices[0].message.content

  select=res[0:6].lower()
  if(select=="select"):
    output=res
  else:
    output="Can't perform the task at the moment."

  return output


def response(user_query):
  embeddings,model,student,employee,course=create_metadata_embeddings()
   
  table_metadata=find_best_fit(embeddings,model,user_query,student,employee,course)

  system_prompt,user_prompt=create_prompt(user_query,table_metadata)

  output=generate_output(system_prompt,user_prompt)

  return output


demo = gr.Interface(
    fn=response,
    inputs=gr.Textbox(label="Please provide the natural language query"),
    outputs=gr.Textbox(label="SQL Query"),
    title="SQL Query generator"
)

demo.launch(share="True")