Spaces:
Sleeping
Sleeping
import gradio as gr | |
import time | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
from TTS.api import TTS # Coqui TTS library | |
import PyPDF2 | |
# Initialize Models | |
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-tiny") | |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2") | |
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False) | |
gpt_model_name = "OpenAssistant/oasst-sft-6-llama-30b" | |
gpt_tokenizer = AutoTokenizer.from_pretrained(gpt_model_name) | |
gpt_model = AutoModelForCausalLM.from_pretrained(gpt_model_name) | |
# Parse PDF and create resume content | |
def parse_resume(pdf): | |
reader = PyPDF2.PdfReader(pdf) | |
text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text()) | |
return {"Resume Content": text} | |
# Process inputs | |
def process_inputs(resume, job_desc): | |
resume_embeddings = { | |
section: embedding_model.encode(content) | |
for section, content in parse_resume(resume).items() | |
} | |
job_desc_embedding = embedding_model.encode(job_desc) | |
return resume_embeddings, job_desc_embedding | |
# Generate a follow-up question using GPT | |
def generate_question_gpt(response, resume_embeddings, job_description): | |
prompt = f""" | |
You are a hiring manager conducting a professional job interview. | |
Job Description: {job_description} | |
Candidate's Resume Insights: {resume_embeddings} | |
Candidate's Last Response: {response} | |
Based on the job description and candidate's resume, generate a professional follow-up question. | |
""" | |
inputs = gpt_tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512) | |
outputs = gpt_model.generate(**inputs, max_length=150, num_beams=3, early_stopping=True) | |
question = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return question.strip() | |
# Generate TTS audio for a question | |
def generate_audio(question): | |
audio_path = "output.wav" | |
tts_model.tts_to_file(text=question, file_path=audio_path) | |
return audio_path | |
# Conduct a mock interview | |
class MockInterview: | |
def __init__(self): | |
self.resume_embeddings = None | |
self.job_desc_embedding = None | |
self.interview_active = False | |
self.current_question = None | |
def start_interview(self, resume, job_desc): | |
self.resume_embeddings, self.job_desc_embedding = process_inputs(resume, job_desc) | |
self.interview_active = True | |
self.current_question = "Tell me about yourself." | |
return self.current_question, generate_audio(self.current_question) | |
def next_interaction(self, user_audio): | |
if not self.interview_active: | |
return "Interview not started.", None | |
# Transcribe user's response | |
transcription = stt_model(user_audio)["text"] | |
if not transcription.strip(): | |
return "No response detected. Please try again.", None | |
# Generate the next question using GPT | |
self.current_question = generate_question_gpt(transcription, self.resume_embeddings, self.job_desc_embedding) | |
return transcription, generate_audio(self.current_question) | |
def end_interview(self): | |
self.interview_active = False | |
return "Thank you for participating in the interview.", generate_audio("Thank you for participating in the interview. Goodbye!") | |
mock_interview = MockInterview() | |
# Gradio Interface | |
def start_interview(resume, job_desc): | |
return mock_interview.start_interview(resume, job_desc) | |
def next_interaction(user_audio): | |
return mock_interview.next_interaction(user_audio) | |
def end_interview(): | |
return mock_interview.end_interview() | |
interface = gr.Blocks() | |
with interface: | |
gr.Markdown("### Mock Interview AI\nUpload your resume and job description, and engage in a realistic audio-based mock interview simulation.") | |
with gr.Row(): | |
resume_input = gr.File(label="Upload Resume (PDF)") | |
job_desc_input = gr.Textbox(label="Paste Job Description") | |
audio_input = gr.Audio(type="filepath", label="Your Response") | |
question_audio_output = gr.Audio(label="Question Audio") | |
transcription_output = gr.Textbox(label="Transcription") | |
resume_input.change(start_interview, inputs=[resume_input, job_desc_input], outputs=[transcription_output, question_audio_output]) | |
audio_input.change(next_interaction, inputs=[audio_input], outputs=[transcription_output, question_audio_output]) | |
end_button = gr.Button("End Interview") | |
end_button.click(end_interview, outputs=[transcription_output, question_audio_output]) | |
if __name__ == "__main__": | |
interface.launch() | |