Excel_chatbot / app.py
garyd1's picture
Update app.py
100cf1c verified
import os
import streamlit as st
import pandas as pd
import openai
import torch
import matplotlib.pyplot as plt
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from dotenv import load_dotenv
import anthropic
import ast
# Load environment variables
load_dotenv()
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
os.environ["ANTHROPIC_API_KEY"] = os.getenv("ANTHROPIC_API_KEY")
# UI Styling
st.markdown(
"""
<style>
.stButton button {
background-color: #1F6FEB;
color: white;
border-radius: 8px;
border: none;
padding: 10px 20px;
font-weight: bold;
}
.stButton button:hover {
background-color: #1A4FC5;
}
.stTextInput > div > input {
border: 1px solid #30363D;
background-color: #161B22;
color: #C9D1D9;
border-radius: 6px;
padding: 10px;
}
.stFileUploader > div {
border: 2px dashed #30363D;
background-color: #161B22;
color: #C9D1D9;
border-radius: 6px;
padding: 10px;
}
.response-box {
background-color: #161B22;
padding: 10px;
border-radius: 6px;
margin-bottom: 10px;
color: #FFFFFF;
}
</style>
""",
unsafe_allow_html=True
)
st.title("Excel Q&A Chatbot πŸ“Š")
# Model Selection
model_choice = st.selectbox("Select LLM Model", ["OpenAI GPT-3.5", "Claude 3 Haiku", "Mistral-7B"])
# Load appropriate model based on selection
if model_choice == "Mistral-7B":
model_name = "mistralai/Mistral-7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
def ask_mistral(query):
inputs = tokenizer(query, return_tensors="pt").to("cuda")
output = model.generate(**inputs)
return tokenizer.decode(output[0])
elif model_choice == "Claude 3 Haiku":
client = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
def ask_claude(query):
response = client.messages.create(
model="claude-3-haiku",
max_tokens=512,
messages=[{"role": "user", "content": query}]
)
return response.content[0]["text"]
else:
client = openai.OpenAI()
def ask_gpt(query):
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": query}]
)
return response.choices[0].message.content
# File Upload
uploaded_file = st.file_uploader("Upload an Excel file", type=["csv", "xlsx"])
if uploaded_file is not None:
file_extension = uploaded_file.name.split(".")[-1].lower()
df = pd.read_csv(uploaded_file) if file_extension == "csv" else pd.read_excel(uploaded_file, engine="openpyxl")
st.write("### Preview of Data:")
st.write(df.head())
# Extract metadata
column_names = df.columns.tolist()
data_types = df.dtypes.apply(lambda x: x.name).to_dict()
missing_values = df.isnull().sum().to_dict()
# Display metadata
st.write("### Column Details:")
st.write(pd.DataFrame({"Column": column_names, "Type": data_types.values(), "Missing Values": missing_values.values()}))
# User Query
query = st.text_input("Ask a question about this data:")
if st.button("Submit Query"):
if query:
# Interpret the query using selected LLM
if model_choice == "Mistral-7B":
parsed_query = ask_mistral(f"Convert this question into a Pandas operation: {query}")
elif model_choice == "Claude 3 Haiku":
parsed_query = ask_claude(f"Convert this question into a Pandas operation: {query}")
else:
parsed_query = ask_gpt(f"Convert this question into a Pandas operation: {query}")
# Validate and clean query
parsed_query = parsed_query.strip().replace("`", "")
st.write(f"Parsed Query: `{parsed_query}`")
# Check for column existence if query involves a column
for col in column_names:
if col in parsed_query and col not in df.columns:
st.error(f"Error: Column '{col}' not found in the uploaded file.")
break
else:
# Execute the query
try:
result = eval(parsed_query, {"df": df, "pd": pd}) # Ensuring df is correctly referenced
st.write("### Result:")
st.write(result if isinstance(result, pd.DataFrame) else str(result))
# If numerical data, show a visualization
if isinstance(result, pd.Series) and result.dtype in ["int64", "float64"]:
fig, ax = plt.subplots()
result.plot(kind="bar", ax=ax)
st.pyplot(fig)
except SyntaxError as e:
st.error(f"Syntax Error in parsed query: {str(e)}")
except Exception as e:
st.error(f"Error executing query: {str(e)}")
# Memory for context retention
if "query_history" not in st.session_state:
st.session_state.query_history = []
st.session_state.query_history.append(query)