Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,6 @@ from transformers import pipeline
|
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
import PyPDF2
|
7 |
-
import sounddevice as sd
|
8 |
-
import queue
|
9 |
|
10 |
# Load local models for inference
|
11 |
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base")
|
@@ -35,38 +33,17 @@ def process_resume(pdf):
|
|
35 |
}
|
36 |
return resume_embeddings
|
37 |
|
38 |
-
# Generate a conversation response
|
39 |
-
def generate_conversation_response(user_input, job_desc_embedding):
|
40 |
-
prompt = f"The user said: {user_input}. Respond appropriately as a professional hiring manager. Focus on how the response relates to the job description."
|
41 |
-
response = conversation_model(prompt, max_length=100, num_return_sequences=1)
|
42 |
-
return response[0]["generated_text"]
|
43 |
-
|
44 |
# Generate question from user response
|
45 |
-
def generate_question(user_input, resume_embeddings
|
46 |
"""Find the most relevant section in the resume and generate a question."""
|
47 |
user_embedding = embedding_model.encode(user_input)
|
48 |
similarities = {
|
49 |
-
section: cosine_similarity([user_embedding], [embedding])[0][0]
|
50 |
for section, embedding in resume_embeddings.items()
|
51 |
}
|
52 |
most_relevant_section = max(similarities, key=similarities.get)
|
53 |
return f"Based on your experience in {most_relevant_section}, can you elaborate more?"
|
54 |
|
55 |
-
# Real-time audio recording and processing
|
56 |
-
def record_audio(callback):
|
57 |
-
"""Record audio and process it in real-time."""
|
58 |
-
q = queue.Queue()
|
59 |
-
|
60 |
-
def audio_callback(indata, frames, time, status):
|
61 |
-
if status:
|
62 |
-
print(status)
|
63 |
-
q.put(indata.copy())
|
64 |
-
|
65 |
-
with sd.InputStream(samplerate=16000, channels=1, callback=audio_callback):
|
66 |
-
while True:
|
67 |
-
audio_data = q.get()
|
68 |
-
callback(audio_data)
|
69 |
-
|
70 |
# Gradio interface
|
71 |
class MockInterview:
|
72 |
def __init__(self):
|
@@ -80,12 +57,12 @@ class MockInterview:
|
|
80 |
self.interview_active = True
|
81 |
return "Resume and job description processed. Interview is starting."
|
82 |
|
83 |
-
def conduct_interview(self,
|
84 |
if not self.interview_active:
|
85 |
return "Please upload your resume and job description first.", ""
|
86 |
|
87 |
-
transcription = stt_model(
|
88 |
-
question = generate_question(transcription, self.resume_embeddings
|
89 |
return transcription, question
|
90 |
|
91 |
def end_interview(self):
|
@@ -97,16 +74,11 @@ mock_interview = MockInterview()
|
|
97 |
def upload_inputs(resume, job_desc):
|
98 |
return mock_interview.upload_inputs(resume, job_desc)
|
99 |
|
100 |
-
def
|
101 |
-
|
102 |
-
if not mock_interview.interview_active:
|
103 |
-
return "Please upload your resume and job description first."
|
104 |
-
|
105 |
-
def process_audio(audio_data):
|
106 |
-
transcription, question = mock_interview.conduct_interview(audio_data)
|
107 |
-
audio_data_callback(transcription, question)
|
108 |
|
109 |
-
|
|
|
110 |
|
111 |
interface = gr.Blocks()
|
112 |
with interface:
|
@@ -119,12 +91,15 @@ Upload your resume and job description, then engage in a realistic interview sim
|
|
119 |
upload_button = gr.Button("Upload and Start Interview")
|
120 |
|
121 |
with gr.Row():
|
|
|
122 |
transcription_output = gr.Textbox(label="Transcription")
|
123 |
question_output = gr.Textbox(label="Question")
|
|
|
124 |
end_button = gr.Button("End Interview")
|
125 |
|
126 |
upload_button.click(upload_inputs, inputs=[resume_input, job_desc_input], outputs=[transcription_output])
|
127 |
-
|
|
|
128 |
|
129 |
if __name__ == "__main__":
|
130 |
interface.launch()
|
|
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
import PyPDF2
|
|
|
|
|
7 |
|
8 |
# Load local models for inference
|
9 |
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base")
|
|
|
33 |
}
|
34 |
return resume_embeddings
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
# Generate question from user response
|
37 |
+
def generate_question(user_input, resume_embeddings):
|
38 |
"""Find the most relevant section in the resume and generate a question."""
|
39 |
user_embedding = embedding_model.encode(user_input)
|
40 |
similarities = {
|
41 |
+
section: cosine_similarity([user_embedding], [embedding])[0][0]
|
42 |
for section, embedding in resume_embeddings.items()
|
43 |
}
|
44 |
most_relevant_section = max(similarities, key=similarities.get)
|
45 |
return f"Based on your experience in {most_relevant_section}, can you elaborate more?"
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
# Gradio interface
|
48 |
class MockInterview:
|
49 |
def __init__(self):
|
|
|
57 |
self.interview_active = True
|
58 |
return "Resume and job description processed. Interview is starting."
|
59 |
|
60 |
+
def conduct_interview(self, audio_file):
|
61 |
if not self.interview_active:
|
62 |
return "Please upload your resume and job description first.", ""
|
63 |
|
64 |
+
transcription = stt_model(audio_file)["text"] # Transcribe audio
|
65 |
+
question = generate_question(transcription, self.resume_embeddings)
|
66 |
return transcription, question
|
67 |
|
68 |
def end_interview(self):
|
|
|
74 |
def upload_inputs(resume, job_desc):
|
75 |
return mock_interview.upload_inputs(resume, job_desc)
|
76 |
|
77 |
+
def conduct_interview(audio_file):
|
78 |
+
return mock_interview.conduct_interview(audio_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
def end_interview():
|
81 |
+
return mock_interview.end_interview()
|
82 |
|
83 |
interface = gr.Blocks()
|
84 |
with interface:
|
|
|
91 |
upload_button = gr.Button("Upload and Start Interview")
|
92 |
|
93 |
with gr.Row():
|
94 |
+
audio_input = gr.Audio(type="filepath", label="Respond with Your Answer")
|
95 |
transcription_output = gr.Textbox(label="Transcription")
|
96 |
question_output = gr.Textbox(label="Question")
|
97 |
+
submit_button = gr.Button("Submit Response")
|
98 |
end_button = gr.Button("End Interview")
|
99 |
|
100 |
upload_button.click(upload_inputs, inputs=[resume_input, job_desc_input], outputs=[transcription_output])
|
101 |
+
submit_button.click(conduct_interview, inputs=[audio_input], outputs=[transcription_output, question_output])
|
102 |
+
end_button.click(end_interview, outputs=[transcription_output])
|
103 |
|
104 |
if __name__ == "__main__":
|
105 |
interface.launch()
|