|
import io |
|
import gradio as gr |
|
import matplotlib.pyplot as plt |
|
import requests, validators |
|
import torch |
|
import pathlib |
|
from PIL import Image |
|
|
|
from transformers import DetrFeatureExtractor, DetrForSegmentation |
|
from transformers.models.detr.feature_extraction_detr import rgb_to_id |
|
|
|
import os |
|
|
|
|
|
def detect_objects(model_name,url_input,image_input,threshold): |
|
|
|
|
|
if 'maskformer' in model_name: |
|
if validators.url(url_input): |
|
image = Image.open(requests.get(url_input, stream=True).raw) |
|
tb_label = "Confidence Values URL" |
|
|
|
elif image_input: |
|
image = image_input |
|
tb_label = "Confidence Values Upload" |
|
|
|
|
|
|
|
|
|
processor = MaskFormerImageProcessor.from_pretrained(model_name) |
|
model = MaskFormerForInstanceSegmentation.from_pretrained(model_name) |
|
|
|
target_size = (img.shape[0], img.shape[1]) |
|
inputs = preprocessor(images=img, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
outputs.class_queries_logits = outputs.class_queries_logits.cpu() |
|
outputs.masks_queries_logits = outputs.masks_queries_logits.cpu() |
|
results = preprocessor.post_process_segmentation(outputs=outputs, target_size=target_size)[0].cpu().detach() |
|
results = torch.argmax(results, dim=0).numpy() |
|
results = visualize_instance_seg_mask(results) |
|
return results, "EMPTY" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif "detr" in model_name: |
|
|
|
if validators.url(url_input): |
|
image = Image.open(requests.get(url_input, stream=True).raw) |
|
tb_label = "Confidence Values URL" |
|
|
|
elif image_input: |
|
image = image_input |
|
tb_label = "Confidence Values Upload" |
|
|
|
feature_extractor = DetrFeatureExtractor.from_pretrained(model_name) |
|
model = DetrForSegmentation.from_pretrained(model_name) |
|
inputs = feature_extractor(images=image, return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
|
|
|
|
processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0) |
|
result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0] |
|
|
|
|
|
panoptic_seg = Image.open(io.BytesIO(result["png_string"])) |
|
panoptic_seg = numpy.array(panoptic_seg, dtype=numpy.uint8) |
|
|
|
panoptic_seg_id = rgb_to_id(panoptic_seg) |
|
|
|
|
|
|
|
return gr.Image.update(), "EMPTY" |
|
|
|
|
|
|
|
|
|
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label) |
|
|
|
|
|
|
|
|
|
final_str_abv = "" |
|
final_str_else = "" |
|
for score, label, box in sorted(zip(processed_outputs["scores"], processed_outputs["labels"], processed_outputs["boxes"]), key = lambda x: x[0].item(), reverse=True): |
|
box = [round(i, 2) for i in box.tolist()] |
|
if score.item() >= threshold: |
|
final_str_abv += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n" |
|
else: |
|
final_str_else += f"Detected `{model.config.id2label[label.item()]}` with confidence `{round(score.item(), 3)}` at location `{box}`\n" |
|
|
|
|
|
final_str = "{:*^50}\n".format("ABOVE THRESHOLD OR EQUAL") + final_str_abv + "\n{:*^50}\n".format("BELOW THRESHOLD")+final_str_else |
|
|
|
return viz_img, final_str |
|
else: |
|
raise NameError(f"Model name {model_name} not prepared") |
|
|
|
def set_example_image(example: list) -> dict: |
|
return gr.Image.update(value=example[0]) |
|
|
|
def set_example_url(example: list) -> dict: |
|
return gr.Textbox.update(value=example[0]) |
|
|
|
|
|
title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>""" |
|
|
|
description = """ |
|
Links to HuggingFace Models: |
|
|
|
- [facebook/detr-resnet-50-panoptic](https://huggingface.co/facebook/detr-resnet-50-panoptic) |
|
- [facebook/detr-resnet-101-panoptic](https://huggingface.co/facebook/detr-resnet-101-panoptic) |
|
- [facebook/maskformer-swin-large-coco](https://huggingface.co/facebook/maskformer-swin-large-coco) |
|
""" |
|
|
|
models = ["facebook/detr-resnet-50-panoptic","facebook/detr-resnet-101-panoptic","facebook/maskformer-swin-large-coco"] |
|
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"] |
|
|
|
|
|
|
|
|
|
|
|
css = ''' |
|
h1#title { |
|
text-align: center; |
|
} |
|
''' |
|
demo = gr.Blocks(css=css) |
|
|
|
|
|
def changing(): |
|
|
|
return gr.Button.update(interactive=True), gr.Button.update(interactive=True) |
|
|
|
|
|
|
|
with demo: |
|
gr.Markdown(title) |
|
gr.Markdown(description) |
|
|
|
options = gr.Dropdown(choices=models,label='Select Image Segmentation Model',show_label=True) |
|
|
|
slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold') |
|
|
|
|
|
|
|
with gr.Tabs(): |
|
with gr.TabItem('Image URL'): |
|
with gr.Row(): |
|
url_input = gr.Textbox(lines=2,label='Enter valid image URL here..') |
|
img_output_from_url = gr.Image(shape=(650,650)) |
|
|
|
with gr.Row(): |
|
example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls]) |
|
|
|
url_but = gr.Button('Detect', interactive=False) |
|
|
|
with gr.TabItem('Image Upload'): |
|
with gr.Row(): |
|
img_input = gr.Image(type='pil') |
|
img_output_from_upload= gr.Image(shape=(650,650)) |
|
|
|
with gr.Row(): |
|
example_images = gr.Dataset(components=[img_input], |
|
samples=[[path.as_posix()] |
|
for path in sorted(pathlib.Path('images').rglob('*.JPG'))]) |
|
|
|
img_but = gr.Button('Detect', interactive=False) |
|
|
|
|
|
|
|
output_text1 = gr.components.Textbox(label="Confidence Values") |
|
|
|
|
|
options.change(fn=changing, inputs=[], outputs=[img_but, url_but]) |
|
|
|
|
|
url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, output_text1],queue=True) |
|
img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, output_text1],queue=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input]) |
|
example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
demo.launch() |