Spaces:
Runtime error
Runtime error
File size: 4,773 Bytes
7f87578 17f6f2d 7f87578 17f6f2d 7f87578 17f6f2d 7f87578 17f6f2d 7f87578 17f6f2d 7f87578 17f6f2d 7f87578 17f6f2d 7f87578 17f6f2d 7f87578 17f6f2d 7f87578 17f6f2d 7f87578 17f6f2d 7f87578 17f6f2d 7f87578 17f6f2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
from __future__ import annotations
import math
import random
import gradio as gr
import numpy as np
import torch
from PIL import Image
from diffusers import StableDiffusionXLImg2ImgPipeline, EDMEulerScheduler, AutoencoderKL
from huggingface_hub import hf_hub_download
# Load the VAE
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
# Download and load the model
pipe_edit = StableDiffusionXLImg2ImgPipeline.from_single_file(
hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors"),
num_in_channels=8,
is_cosxl_edit=True,
vae=vae,
torch_dtype=torch.float16,
)
# Set the scheduler
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_edit.to("cuda")
# Load the refiner
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0",
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16"
)
refiner.to("cuda")
# Patch for the scheduler
def set_timesteps_patched(self, num_inference_steps: int, device=None):
self.num_inference_steps = num_inference_steps
ramp = np.linspace(0, 1, self.num_inference_steps)
sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
sigmas = sigmas.to(dtype=torch.float32, device=device)
self.timesteps = self.precondition_noise(sigmas)
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu")
EDMEulerScheduler.set_timesteps = set_timesteps_patched
# Function to perform image editing
def king(input_image, instruction: str, negative_prompt: str = "", steps: int = 25, randomize_seed: bool = True, seed: int = 2404, guidance_scale: float = 6, progress=gr.Progress(track_tqdm=True)):
input_image = Image.open(input_image).convert('RGB')
if randomize_seed:
seed = random.randint(0, 999999)
generator = torch.manual_seed(seed)
output_image = pipe_edit(
instruction,
negative_prompt=negative_prompt,
image=input_image,
guidance_scale=guidance_scale,
image_guidance_scale=1.5,
width=input_image.width,
height=input_image.height,
num_inference_steps=steps,
generator=generator,
output_type="latent",
).images
refine = refiner(
prompt=f"{instruction}, 4k, hd, high quality, masterpiece",
negative_prompt=negative_prompt,
guidance_scale=7.5,
num_inference_steps=steps,
image=output_image,
generator=generator,
).images[0]
return seed, refine
# CSS for the Gradio interface
css = '''
.gradio-container{max-width: 700px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
# Examples for the Gradio interface
examples = [
["./supercar.png", "make it red"],
["./red_car.png", "add some snow"],
]
# Creating the Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("# Image Editing\n### Note: First image generation takes time")
with gr.Row():
instruction = gr.Textbox(lines=1, label="Instruction", interactive=True)
generate_button = gr.Button("Run", scale=0)
with gr.Row():
input_image = gr.Image(label="Image", type='filepath', interactive=True)
with gr.Row():
guidance_scale = gr.Number(value=6.0, step=0.1, label="Guidance Scale", interactive=True)
steps = gr.Number(value=25, step=1, label="Steps", interactive=True)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, ugly, disgusting, blurry, amputation,(face asymmetry, eyes asymmetry, deformed eyes, open mouth)",
visible=True
)
with gr.Row():
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True, interactive=True)
seed = gr.Number(value=2404, step=1, label="Seed", interactive=True)
gr.Examples(
examples=examples,
inputs=[input_image, instruction],
outputs=[input_image],
cache_examples=False,
)
generate_button.click(
king,
inputs=[input_image, instruction, negative_prompt, steps, randomize_seed, seed, guidance_scale],
outputs=[seed, input_image],
)
demo.queue(max_size=500).launch()
|