File size: 4,773 Bytes
7f87578
 
 
 
 
 
 
17f6f2d
 
7f87578
17f6f2d
7f87578
17f6f2d
 
7f87578
 
 
 
 
 
 
17f6f2d
 
7f87578
 
 
17f6f2d
 
 
 
 
 
 
 
7f87578
 
17f6f2d
7f87578
 
 
 
17f6f2d
7f87578
 
 
 
 
 
 
 
17f6f2d
 
7f87578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17f6f2d
7f87578
 
 
 
 
 
 
 
17f6f2d
7f87578
17f6f2d
 
7f87578
 
17f6f2d
7f87578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17f6f2d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from __future__ import annotations
import math
import random
import gradio as gr
import numpy as np
import torch
from PIL import Image
from diffusers import StableDiffusionXLImg2ImgPipeline, EDMEulerScheduler, AutoencoderKL
from huggingface_hub import hf_hub_download

# Load the VAE
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

# Download and load the model
pipe_edit = StableDiffusionXLImg2ImgPipeline.from_single_file(
    hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors"),
    num_in_channels=8,
    is_cosxl_edit=True,
    vae=vae,
    torch_dtype=torch.float16,
)

# Set the scheduler
pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
pipe_edit.to("cuda")

# Load the refiner
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-refiner-1.0", 
    vae=vae, 
    torch_dtype=torch.float16, 
    use_safetensors=True, 
    variant="fp16"
)
refiner.to("cuda")

# Patch for the scheduler
def set_timesteps_patched(self, num_inference_steps: int, device=None):
    self.num_inference_steps = num_inference_steps
    ramp = np.linspace(0, 1, self.num_inference_steps)
    sigmas = torch.linspace(math.log(self.config.sigma_min), math.log(self.config.sigma_max), len(ramp)).exp().flip(0)
    sigmas = sigmas.to(dtype=torch.float32, device=device)
    self.timesteps = self.precondition_noise(sigmas)
    self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
    self._step_index = None
    self._begin_index = None
    self.sigmas = self.sigmas.to("cpu")

EDMEulerScheduler.set_timesteps = set_timesteps_patched

# Function to perform image editing
def king(input_image, instruction: str, negative_prompt: str = "", steps: int = 25, randomize_seed: bool = True, seed: int = 2404, guidance_scale: float = 6, progress=gr.Progress(track_tqdm=True)):
    input_image = Image.open(input_image).convert('RGB')
    if randomize_seed:
        seed = random.randint(0, 999999)
    generator = torch.manual_seed(seed)
    output_image = pipe_edit(
        instruction,
        negative_prompt=negative_prompt,
        image=input_image,
        guidance_scale=guidance_scale,
        image_guidance_scale=1.5,
        width=input_image.width,
        height=input_image.height,
        num_inference_steps=steps,
        generator=generator,
        output_type="latent",
    ).images
    refine = refiner(
        prompt=f"{instruction}, 4k, hd, high quality, masterpiece",
        negative_prompt=negative_prompt,
        guidance_scale=7.5,
        num_inference_steps=steps,
        image=output_image,
        generator=generator,
    ).images[0]  
    return seed, refine

# CSS for the Gradio interface
css = '''
.gradio-container{max-width: 700px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

# Examples for the Gradio interface
examples = [
    ["./supercar.png", "make it red"],
    ["./red_car.png", "add some snow"],
]

# Creating the Gradio interface
with gr.Blocks(css=css) as demo:
    gr.Markdown("# Image Editing\n### Note: First image generation takes time")
    with gr.Row():
        instruction = gr.Textbox(lines=1, label="Instruction", interactive=True)
        generate_button = gr.Button("Run", scale=0)
        
    with gr.Row():
        input_image = gr.Image(label="Image", type='filepath', interactive=True)

    with gr.Row():
        guidance_scale = gr.Number(value=6.0, step=0.1, label="Guidance Scale", interactive=True)
        steps = gr.Number(value=25, step=1, label="Steps", interactive=True)

    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, ugly, disgusting, blurry, amputation,(face asymmetry, eyes asymmetry, deformed eyes, open mouth)",
                visible=True
            )
        with gr.Row():
            randomize_seed = gr.Checkbox(label="Randomize Seed", value=True, interactive=True)
            seed = gr.Number(value=2404, step=1, label="Seed", interactive=True)

    gr.Examples(
        examples=examples,
        inputs=[input_image, instruction],
        outputs=[input_image],
        cache_examples=False,
    )

    generate_button.click(
        king,
        inputs=[input_image, instruction, negative_prompt, steps, randomize_seed, seed, guidance_scale],
        outputs=[seed, input_image],
    )

demo.queue(max_size=500).launch()