Knight_Engine / app.py
gaur3009's picture
Create app.py
b5839d1 verified
raw
history blame
6.29 kB
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
from PIL import Image
import requests
from io import BytesIO
import time
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the design generation model
repo = "artificialguybr/TshirtDesignRedmond-V2"
def generate_image(prompt):
api_url = f"https://api-inference.huggingface.co/models/{repo}"
payload = {
"inputs": prompt,
"parameters": {
"negative_prompt": "(worst quality, low quality, etc.)",
"num_inference_steps": 30,
"scheduler": "DPMSolverMultistepScheduler"
},
}
while True:
response = requests.post(api_url, json=payload)
if response.status_code == 200:
return Image.open(BytesIO(response.content))
else:
raise Exception(f"API Error: {response.status_code}")
# Load the clothing customization model
if torch.cuda.is_available():
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def customize_clothing(prompt_part1, color, dress_type, design_prompt, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
# Generate the design first
design_image = generate_image(design_prompt)
# Now customize the clothing with the generated design
prompt = f"{prompt_part1} {color} colored plain {dress_type} with custom design, {prompt_part5}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
return image
examples = [
"red, t-shirt, cute panda",
"blue, hoodie, skull",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
Currently running on {power_device}.
""")
with gr.Row():
prompt_part1 = gr.Textbox(
value="a single",
label="Prompt Part 1",
show_label=False,
interactive=False,
container=False,
elem_id="prompt_part1",
visible=False,
)
prompt_part2 = gr.Textbox(
label="color",
show_label=False,
max_lines=1,
placeholder="color (e.g., color category)",
container=False,
)
prompt_part3 = gr.Textbox(
label="dress_type",
show_label=False,
max_lines=1,
placeholder="dress_type (e.g., t-shirt, sweatshirt, shirt, hoodie)",
container=False,
)
prompt_part4 = gr.Textbox(
label="design",
show_label=False,
max_lines=1,
placeholder="design",
container=False,
)
prompt_part5 = gr.Textbox(
value="hanging on the plain wall",
label="Prompt Part 5",
show_label=False,
interactive=False,
container=False,
elem_id="prompt_part5",
visible=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=2,
)
gr.Examples(
examples=examples,
inputs=[prompt_part2]
)
run_button.click(
fn=customize_clothing,
inputs=[prompt_part1, prompt_part2, prompt_part3, prompt_part4, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result]
)
demo.queue().launch()