File size: 4,194 Bytes
4eb325f
 
 
 
c50dda1
 
4eb325f
 
c50dda1
 
 
 
4eb325f
c50dda1
4eb325f
 
 
 
 
c50dda1
 
4eb325f
 
 
 
 
 
 
 
 
 
 
 
c50dda1
 
4eb325f
c50dda1
 
4eb325f
 
 
 
 
c50dda1
 
 
 
 
4eb325f
 
 
 
 
 
 
 
 
 
 
 
 
 
c50dda1
4eb325f
c50dda1
4eb325f
 
 
 
40781f0
 
 
 
 
 
 
9bcc9ed
40781f0
 
 
 
4eb325f
40781f0
 
c50dda1
 
40781f0
 
 
c50dda1
 
40781f0
 
4eb325f
 
 
 
 
40781f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eb325f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
import PyPDF2
from transformers import AutoTokenizer, AutoModel
import torch
from weaviate import WeaviateClient
from weaviate.auth import AuthApiKey
import cohere

auth = AuthApiKey(api_key="7VoeYTjkOS4aHINuhllGpH4JPgE2QquFmSMn")
client = WeaviateClient(
    url="https://vgwhgmrlqrqqgnlb1avjaa.c0.us-west3.gcp.weaviate.cloud",
    auth_client=auth
)

cohere_client = cohere.Client("LEvCVeZkqZMW1aLYjxDqlstCzWi4Cvlt9PiysqT8")

def load_pdf(file):
    reader = PyPDF2.PdfReader(file)
    text = ''
    for page in reader.pages:
        text += page.extract_text()
    return text

tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')

def get_embeddings(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    with torch.no_grad():
        embeddings = model(**inputs).last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
    return embeddings

def upload_document_chunks(chunks):
    doc_collection = client.collections.get("Document")
    for chunk in chunks:
        embedding = get_embeddings(chunk)
        doc_collection.data.insert(
            properties={"content": chunk},
            vector=embedding.tolist()
        )

def query_answer(query):
    query_embedding = get_embeddings(query)
    response = client.collections.get("Document").query.near_vector(
        near_vector=query_embedding.tolist(),
        limit=3
    )
    return response.objects

def generate_response(context, query):
    response = cohere_client.generate(
        model='command',
        prompt=f"Context: {context}\n\nQuestion: {query}?\nAnswer:",
        max_tokens=100
    )
    return response.generations[0].text.strip()

def qa_pipeline(pdf_file, query):
    document_text = load_pdf(pdf_file)
    document_chunks = [document_text[i:i+500] for i in range(0, len(document_text), 500)]

    upload_document_chunks(document_chunks)
    top_docs = query_answer(query)

    context = ' '.join([doc.properties['content'] for doc in top_docs])
    answer = generate_response(context, query)

    return context, answer

with gr.Blocks(theme="compact") as demo:
    gr.Markdown(
        """
        <div style="text-align: center; font-size: 28px; font-weight: bold; margin-bottom: 20px; color: #2D3748;">
            πŸ“„ Interactive QA Bot πŸ”
        </div>
        <p style="text-align: center; font-size: 16px; color: #4A5568;">
            Upload a PDF document, ask questions, and receive answers based on the document content.
        </p>
        <hr style="border: 1px solid #CBD5E0; margin: 20px 0;">
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            pdf_input = gr.File(label="πŸ“ Upload PDF", file_types=[".pdf"])
            query_input = gr.Textbox(label="❓ Ask a Question", placeholder="Enter your question here...")
            submit_button = gr.Button("πŸ” Submit")

        with gr.Column(scale=2):
            doc_segments_output = gr.Textbox(label="πŸ“œ Retrieved Document Segments", lines=10)
            answer_output = gr.Textbox(label="πŸ’¬ Answer", lines=3)

    submit_button.click(
        qa_pipeline,
        inputs=[pdf_input, query_input],
        outputs=[doc_segments_output, answer_output]
    )

    gr.Markdown(
        """
        <style>
            body {
                background-color: #EDF2F7;
            }
            input[type="file"] {
                background-color: #3182CE;
                color: white;
                padding: 8px;
                border-radius: 5px;
            }
            button {
                background-color: #3182CE;
                color: white;
                padding: 10px;
                font-size: 16px;
                border-radius: 5px;
                cursor: pointer;
            }
            button:hover {
                background-color: #2B6CB0;
            }
            textarea {
                border: 2px solid #CBD5E0;
                border-radius: 8px;
                padding: 10px;
                background-color: #FAFAFA;
            }
        </style>
        """
    )

demo.launch()